Posts

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

According to Brandon Hall Group research, investment in employee training and development programs to enhance skills and knowledge is the highest-rated initiative globally to improve the employee experience. One highly effective approach towards revolutionizing training and onboarding is a continuous learning method called everboarding.

applying everboarding in manufacturing

Everboarding is a modernized approach toward employee onboarding and training that recognizes learning as a continuous and ongoing process. Its foundational characteristic is the belief that learning doesn’t stop after the initial onboarding period. Instead, everboarding emphasizes continuous skill development and employee knowledge enhancement throughout their careers.

Applying everboarding in a manufacturing environment involves tailoring continuous learning and development approaches to the unique needs and challenges of factory floor operations. As industrial processes evolve, employees must be routinely educated on process improvements, new technologies, safety standards, and efficiency initiatives.

Read on to learn more about how to apply everboarding to the factory floor and how fostering a culture of continuous improvement and learning keeps frontline workers safe, efficient, and engaged:

Steps for Implementing Everboarding in Manufacturing Operations

Everboarding in the context of the manufacturing industry refers to a forward-looking approach that ensures employees remain well-trained, adaptable, and aligned with industry standards throughout their tenure. This is essential in dynamic and fast-paced industrial environments like manufacturing. Here are some steps and strategies to begin implementing everboarding in your operations:

  1. Operationalize Learning: Develop and maintain a systematic approach to training and workforce development and ensure that ongoing training and development are available for all shop floor workers.
  2. Develop Learning Pathways: Create clear learning pathways and career development plans for employees. These pathways should outline the skills and knowledge required for career advancement within the manufacturing shop floor.
  3. Implement Digital Learning Platforms: Leverage digital learning platforms and smart, connected solutions to provide employees with access to training materials, videos, courses, and other resources. These platforms can track progress, and employees can learn at their own pace.
  4. Integrate Learning into the Workflow: Using digital, mobile, and connected technologies, organizations can integrate training into the factory floor for moment-of-need guidance and microlearning that allows frontline workers to stay compliant and operations to continue smoothly.
  5. Provide Feedback and Improvement Loops: Create a feedback mechanism where employees can provide suggestions for improving training programs and processes. Make sure to act on the feedback to continuously enhance the training experience.
  6. Initiate Regular Skill Assessments: Implement regular assessments and evaluations to identify areas where employees need further training or improvement.

Everboarding in a manufacturing factory floor environment is critical for keeping the workforce skilled, adaptable, and able to meet changing demands and technological advancements. By fostering a culture of continuous learning and improvement, you can ensure that the factory floor remains efficient and productive.

5 Useful Everboarding Technologies

Implementing Everboarding in manufacturing requires the use of various technologies to facilitate continuous learning and skill development. Here are five (5) useful technologies that can help speed the adoption of everboarding methods on the factory floor and support frontline workers on their continuous learning paths.

  1. Learning Management Systems (LMS): LMS platforms are essential for delivering and managing training content. They allow manufacturing companies to organize courses, track employee progress, and ensure compliance with training requirements.
  2. Connected Worker Applications: Connected worker applications provide mobile solutions, real-time data, and actionable insights that enable customized and personalized training dedicated to the needs of individual workers and specific tasks.
  3. Artificial Intelligence (AI): AI-driven systems can personalize training content based on employee performance and preferences. AI’s ability to process vast amounts of data, provide personalized experiences, and offer real-time feedback makes it a powerful tool for implementing everboarding.
  4. Internet of Things (IoT): IoT sensors can be integrated into manufacturing equipment to gather data on machine performance and employee interactions. This data can inform training needs and help identify areas for improvement.
  5. Wearable Technology: Wearable devices can be used for on-the-job training and performance monitoring. They are especially useful in high-risk manufacturing environments.

These technologies leverage connectivity, digital tools, and data to create a more dynamic and adaptive learning environment for frontline employees. By integrating emerging technologies like smart, connected worker solutions into manufacturing operations, companies can create a more agile and adaptive learning environment that supports the foundations of everboarding.

Pro Tip

Digital training tools can help implement everboarding and improve learning speed and retention. For example, workers who need visuals or real-world scenarios can access them using AI-powered software to create a comprehensive everboarding and training program that supports frontline employees throughout the entire skills and training lifecycle.

A

Improving Manufacturing Training with Everboarding

Implementing new learning technologies in any industry is met with a certain number of challenges. This remains especially true for the factory floor where training and development are traditionally separate from the work being done, and where traditional onboarding has been a one-and-done type of approach.

However, because everboarding is a process of continuous learning, organizations can improve their industrial training and onboarding, ensuring employees continually acquire new skills and knowledge to adapt to evolving technologies and processes. This not only helps in training new employees but also enables continuous learning and skill development for the entire workforce, improving productivity, safety, and quality in the process.

Implementing everboarding in factory floor operations can seem complex but it is a rewarding process that can be streamlined through solutions like Augmentir’s connected worker solution. With our AI-driven insights, our connected solution reduces onboarding time and transforms workforce training, bringing learning to the factory floor through intelligent guidance that delivers information to workers at the point of need.

Learn how manufacturers are implementing Augmentir’s AI-driven connected worker tools to capture and digitize tribal knowledge, reskill and upskill their workers, and empower their frontline teams – schedule a live demo today.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Staying ahead of the curve in today’s manufacturing marketplace means that businesses need to innovate and adapt. To accomplish this, organizations must have a skilled workforce and ongoing training and workforce management processes to support continuous learning and development.

Modernizing training cultivates employee skillsets by implementing continuous learning in the flow of work.

modernize manufacturing training with continuous learning

Continuous learning is the process of attaining new skills on a constant basis. Workflow learning involves educating yourself on the job using resources and self-directed learning materials. Done together, this modern training approach can help streamline productivity.

If you want to learn how to improve manufacturing training with continuous learning and workflow learning, explore this article that answers the following:

What is continuous learning?

Continuous learning in manufacturing involves enabling workers to learn new skills regularly. It’s a great way to improve employee performance and innovation. According to Forbes, embracing a culture of continuous learning can help organizations adapt to market demands, foster innovation, as well as attract and retain top talent.

Learning can come in different forms, from formal course training to hands-on experience. Employees are encouraged to be self-starters who want to evolve their skills on an on-going basis. A good example of a continuous learning model is everboarding; everboarding is a modern approach toward employee onboarding and training that shifts away from the traditional “one-and-done” onboarding model and recognizes learning as an ongoing process.

How can continuous learning be used in manufacturing?

When businesses don’t support continuous learning, manufacturing processes stagnate. This contributes to a lack of innovation and hinders potential opportunities for success that a company may experience.

In a nutshell, the more workers know and the more they can accomplish, the more they can contribute to business growth. This may consist of employees taking an online course or learning a new technique hands-on, no matter what department they’re in.

For example, assembly line workers may learn new manufacturing processes to ensure everything is functioning properly. Meanwhile, operators may study the latest machinery to learn new tricks of the trade.

What is workflow learning?

Workflow training in manufacturing involves learning while doing. This means that workers pick up new skills while on the job through hands-on experience.

The key to workflow learning is that it happens while employees perform their everyday tasks.

Many workers in the manufacturing industry work in shift-based environments, making it difficult for them to attend traditional classroom-based training sessions. With workflow learning, organizations can incorporate more learning processes into the everyday workday of frontline workers – essentially bridging the gap between knowing and doing. This “active learning” aligns with the Pyramid of Learning visual model that illustrates the different stages of learning and their relative effectiveness.

pyramid of learning

Active learning involves the learner actively engaging with the material, often through problem-solving, discussion, or application of the knowledge while they are on the job.

In general, active learning is considered more effective than passive learning in promoting deep understanding and retention of information. Therefore, learning leaders often strive to design learning experiences that involve higher levels of active learning, moving beyond the lower levels of the pyramid and promoting critical thinking, creativity, and problem-solving skills.

How can workflow learning be used in manufacturing?

Workflow learning consists of using resources at your disposal to complete tasks. This strategy is sometimes referred to as performance support.

For example, workers can look up answers to questions, steps of a process, or new services while performing their jobs instead of interrupting their workflow to go to a class or training session.

Pro Tip

Active, or workflow learning can be implemented with mobile learning solutions that leverage connected worker technology and AI to provide workers with bite-sized, on-demand training modules that they can access on smartphones or tablets. These modules can be developed with customized learning paths that are focused on the type of tasks and work employees are doing on the factory floor.

A

How can technology improve manufacturing training?

The nature of manufacturing training is changing in the age of artificial intelligence. Today, many training processes can be streamlined and optimized using digital and smart, connected worker technologies.

For instance, data collected from everyday manufacturing processes can polish training programs online. Experienced workers can share best practices on customized dashboards for other employees to access. These can be updated in real-time and show changes highlighted to better optimize manufacturing processes.

Digital training tools can also help improve learning speed and retention. For example, workers who need visuals or real-world scenarios can assess them using AI-powered software to maximize their training.

 

Augmentir is the world’s leading AI-powered connected worker solution that helps industrial companies optimize the safety, quality, and productivity of the industrial frontline workforce. Contact us for a live demo, and learn why leading manufacturers are choosing us to elevate their manufacturing operations to the next level.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Augmentir’s take on the trending Workforce Institute’s staggering survey numbers.

Employee onboarding is crucial to any organization. It’s even more important in manufacturing, where workers have to understand complex operating procedures and accomplish tasks in a timely manner.

An employee’s first impression of a workplace can set the tone for their entire experience with the company. An engaging and informative onboarding process can improve job performance by setting up workers for success.

Plus, an employee is more likely to speak highly of the business they work for if they see themselves as a valuable member of the team.

If want to improve your manufacturing employee onboarding process, explore this article that goes over the following:

What is employee onboarding?

Employee onboarding is the process in which new hires are integrated into a company. It involves training activities, a new-hire orientation, and learning about the business’s structure, culture, mission and values.

Finding the right candidate for a position is the first step to building a successful team. Onboarding that new employee is the most important next step. Done right, this process can set the precedent for a productive, content and even excited worker.

The two main goals of the first day of onboarding should be to set clear employee expectations and introduce their objectives. Workers should know what their job duties and responsibilities are from the get-go.

How is onboarding different from employee orientation?

Onboarding is often confused with employee orientation. Orientation usually involves completing necessary paperwork, while the onboarding process is comprehensive and can last for months.

Employee orientation is a one-time event. Its purpose is to welcome new hires to a company and introduce a checklist of mandatory tasks to complete such as filling out forms.

Employee onboarding, meanwhile, consists of completing a series of activities, including orientation. It includes training over a longer period of time to help workers learn more about their roles, their teams and how their jobs relate to overarching company goals.

Both onboarding and orientation are critical aspects of introducing employees to their new work environment. They also complement each other in improving employee engagement.

How to effectively onboard new hires

Investing time in your workers is one of the best ways to retain employees and boost productivity.

A new hire’s first few weeks are some of the most important in setting up expectations and building their personal investment in your company.

Go above and beyond and you’ll reap the benefits. Overlook the onboarding experience and you could have unsatisfied employees.

Here are five ways to effectively onboard new hires:

Step 1: Create a worker playbook.

Start by giving a general overview of your business, including your mission, values and perks. Some things to include are:

  • Your customers and stakeholders
  • Work culture and expectations
  • Team members/employees
  • What company success and growth look like

Step 2: Set 90-day goals.

Giving new hires direction and actionable items from the start is important. Identify some goals to work towards to give employees the confidence to excel in the company.

Be sure to provide any resources they will need and connect employees with other workers who can help them. Having a clear plan will make it easier to track goals and collaborate with workers along the way.

Step 3: Set a time to meet and provide feedback.

Set aside time to meet with new hires to provide feedback and ask how they are doing. This can foster connectedness and engagement between you and your employee.

This also gives you the opportunity to learn more about your workers and address any concerns they may have.

It also lets you elicit employee observations of the company and its processes, which can be insightful. A new hire may offer ideas that people invested in the current paradigm wouldn’t think of.

Step 4: Outline schedule and job duties.

It’s crucial to set consistent work schedules to ensure productivity. Loose or frequently changing schedules can lead new hires to think your organization is disorganized.

Further, outlining job duties (such as required skills) can also give employees a sense of direction and ensure they have plenty to work on.

Consider digitizing your onboarding and training program to help accelerate the overall onboarding schedule and get your employees productive faster, and build a program that incorporates the following:

  • Job expectations
  • Performance evaluation
  • Role shadowing
  • Training opportunities
  • HR meetings/employee documentation
  • Compliance training
  • Ongoing assessment through quizzing

In time, new hires will have a better idea of their workload and how to create and execute their own daily task lists.

Step 5: Set up continuous learning opportunities.

The best results from onboarding come months after the process is over. That’s because setting up continuous employee learning opportunities fosters professional development.

A worker can take everything that they learned from the onboarding process and apply it to their day-to-day tasks. Give workers the support and guidance they need, at the moment of need, whether it’s immediate access to a digital troubleshooting guide, or connecting virtually with a subject matter expert. Delivering personalized work procedures for every worker allows for continuous learning and growth.

Why onboarding is important in manufacturing

Creating effective onboarding programs can boost employee engagement and create a manufacturing workforce that excels in industry-related skills.

Effective onboarding has also been shown to:

  • Reduce employee turnover
  • Cultivate existing and new skills
  • Integrate workers more quickly
  • Foster long-term employee satisfaction
  • Create the foundation for workforce development

Optimizing onboarding with connected worker technology

Many manufacturing companies are using modern connected worker technology to transform and optimize how they hire, onboard, train, and deliver on-the-job guidance and support. AI-based connected worker software provides a data-driven approach that helps train, guide, and support today’s dynamic workforces by combining digital work instructions, remote collaboration, and advanced on-the-job training capabilities.

As workers become more connected, manufacturers have access to a new rich source of activity, execution, and tribal data, and with proper digital tools can gain insights into areas where the largest improvement opportunities exist. Today’s workers embrace change and expect technology, support and modern tools to help them do their jobs.

Augmentir’s AI-based connected worker solution delivers continuous learning and development tools to optimize onboarding training for a rapidly changing and diverse workforce.

Built-in reporting for skills management and job proficiency allows you to accurately track and manage skills, certifications, and qualifications for your team. AI-based analytics help you better understand your workforce and make informed workforce development decisions.

intelligently assign jobs

Find out how our software can make it easier to onboard new employees and set them up for success. Contact us today to arrange a demo.

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

As manufacturing operations continue to modernize and evolve it is clear that without big data they won’t be able to sustain themselves. More and more manufacturers are looking to the tremendous capabilities and insights that digitized information can provide.

Shop floor data collection enables businesses to better measure, standardize, and optimize their production processes. It’s more important than ever before to have information that provides real-time insights for measurable progress.

Accurate reporting is more sustainable if management deploys a work culture and production infrastructure that supports digitized manufacturing data collection with connected worker platforms and solutions.

We discuss more about collecting data and how to improve it in the following sections:

manufacturing data collection

Examples of data collection in manufacturing

Data collection has many uses in a variety of situations for a wide array of manufacturing roles, from operators and engineers to plant managers and even leadership.

For example:

  • Plant managers use production dashboards to better gauge where operators need support, such as when a piece of equipment isn’t working.
  • Operators use machine interfaces that show the status of machine processes, part counts, and other measurable data to ensure they are meeting production targets.
  • Quality managers use production line data to identify and proactively address quality issues.
  • Engineers use collected data to check for any bottlenecks and adjust processes if necessary.
Pro Tip

Frontline workers often witness safety, quality, or maintenance issues on the factory floor. They are effectively a “human sensor” on the manufacturing process and can readily identify issues that need to be addressed. Today, recording data and resolving those issues is most often a manual and paper-based process. As such, there is minimal data collection, latency in resolving the issue, and little-to-no feedback to the frontline worker on resolution.

Equipping workers with mobile and digital tools can help optimize shop floor data collection.

A

Which data to keep an eye on

Data generated on the shop floor can vary depending on the nature of work, the type of devices and technologies used, and the area of operation. Much of this data is of use to manufacturers and can be used to improve production processes.

Useful types of data for manufacturers that we recommend keeping an eye on are:

Inventory data: This type of data helps manufacturers keep track of product inventory. With it they can better gauge what items need to be restocked or which ones aren’t bringing any value to the customer as well as improve forecasting ability and more.

Quality and Inspection data: Ensuring product quality is a priority in manufacturing. Collecting data related to quality control, product inspection, and identifying defects or deviations from the desired standards is crucial to maintaining high-quality products and operations.

Machine data: Optimizing a production process can become difficult if you don’t know the status of your equipment. Manufacturing data collection can be digitized to analyze machine quality and performance, equipment runtime and downtimes, or other machine-related problems. Sensors monitor machine use and downtime, maintenance time, cycle time, and more. Studying this collected data helps identify where production can be improved to optimize efficiency.

Using AI, manufacturers can filter out the “white noise” data (or data that is of no use) to derive actionable insights more effectively than with traditional methods. Automating, standardizing, and digitizing manufacturing processes also improves manufacturing data collection procedures, making them streamlined, accurate, and reliable.

How to improve production data collection

Manufacturing data collection is transforming the way businesses handle their operational decisions. However, it can also pose setbacks to your production line if you gather inaccurate data.

Manufacturers must implement data collection systems that are easy to understand and navigate. You’re risking inconsistent data collection and reporting when you install a system with complicated functions and navigation tools. This can be avoided by focusing on people-centric, intuitive, and user-friendly systems that fit into the everyday flow of work for the frontline workforce.

quality manufacturing data collection

Implementing a unified system alone won’t improve data collection. Solutions that incorporate enhanced mobile capabilities and provide a truly connected enterprise are able to facilitate and optimize data collection efforts.

Examples of some useful smart, connected solutions to improve manufacturing data collection are:

  • Personalized, Digital Work Instructions: these intelligently deliver personalized digital work instructions matched to the needs of each worker in order to deftly guide them through and streamline day-to-day operations.
  • Connected Asset Management: these tools help simplify operations and maintenance of facilities, manage work and maintenance procedures, collaboration, and more.
  • Skills Management: these systems create visibility into workforce capability and optimize training programs, track individual and team progress, and initiate more targeted training and upskilling.

In addition to all the benefits listed above, these smart, connected worker tools are able to empower frontline workers with improved data-driven decision-making abilities that aid in safety, quality, and productivity efforts.

Benefits of digitizing shop floor data collection

Production data collection can make all the difference to a company’s success and give them a competitive edge. Smart, connected worker solutions enhance collection processes, allowing for real-time data collection, streamlined communication and collaboration between frontline workers.

Data-driven strategies can help with:

  • Creating better maintenance procedures based on real-time insights and equipment conditions
  • Optimizing worker productivity by minimizing production errors
  • Reducing downtime by providing real-time feedback
  • Developing higher quality products that increase customer satisfaction
  • Cutting supply chain costs due to better forecasting and waste reduction techniques

Implementing accurate, connected worker solutions can take your data collection efforts to the next level. That’s where Augmentir can help. We are the world’s only AI-driven, people-centric smart connected worker solution to standardize and optimize data collection using groundbreaking AI analytics technology.

See how our AI-focused connected worker solutions are driving results and improving data collection and data-driven decision-making across manufacturing operations – schedule a demo now.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

 

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

Unexpected product quality issues can be a hassle to manage, especially when staff is stuck with processing time-consuming complaints, replacements, and refunds. Even worse, the impact on your bottom line can be substantial.

Manufacturers risk a significant cut to their profit margins when quality standards are not followed during the production process. To improve quality on the shop floor, plant managers need to pinpoint the root cause of quality issues.

Explore this article to learn how to start boosting your industrial processes today:

improve production quality in manufacturing

 

What is Production Quality

Production quality, or manufacturing quality, measures how well a manufacturing process develops products to fit design specifications. Manufacturers must devise a plan for how they want specific items to appear and function before creating them. This can include things like colors, durability, range of motion, measurements, and more. How well a product is made will depend on meeting these conditions.

After the design is planned, a number of factors can affect production quality, including:

  • Equipment/machines
  • Materials
  • Batch size
  • Human mistakes
  • Environmental issues
Pro Tip

Frontline workers often witness quality issues on the factory floor. They are effectively a “human sensor” in the manufacturing process and can readily identify issues that need to be addressed. Today, recording data and resolving those quality issues is most often a manual and paper-based process. As such, there is minimal data collection, latency in resolving the issue, and little-to-no feedback to the frontline worker on resolution.

Equipping workers with mobile and digital tools can help optimize production quality.

A

5 steps to improve production quality

Although there may not be one single method for improving manufacturing quality, there are steps you can take to maximize success.

Here are five steps that should be part of your strategy.

Step 1: Assess your current workflow.

Start by reviewing your existing manufacturing processes. We encourage management to ask the following questions as part of their review:

  • What quality benchmarks do you hope to achieve for each product?
  • How much money have you lost from material, energy waste, and wasted time due to quality problems?
  • What is your margin for improvement?
  • What quality standards are implemented in the creation of products?
  • Is your equipment inter-connected with different databases, or just a single database?

We recommend connecting your factory devices to one central database with a cloud-based, connected worker solution that operations management can use to create, assign, manage, and monitor the work being done. This kind of software can help streamline operational processes and track results in real-time.

Step 2: Remove unneeded processes.

Once you’ve accessed your current workflow and set up a connected worker solution to collect frontline worker data, we recommend coupling it with AI-powered analytics that can derive actionable insights. Then you can use these actionable, data-led insights to see which processes are adding value and which ones are not.

quality manufacturing data collection

Step 3: Boost worker training.

It’s important to maintain regular employee training and skills development programs to ensure workers are staying on top of industry best practices, equipment upkeep, and product knowledge. AI-powered connected worker solutions make learning more accessible, engaging, and effective.

Step 4: Create quality goals.

Developing quality goals is a great way to measure product benchmarks, production time, material usage, labor cost, working hours, and more. By digitizing and standardizing quality processes, you’ll be able to see which manufacturing processes are adding to your bottom line and which can be eliminated to bring value to the customer.

Step 5: Cut production waste.

Cutting waste from your production run can improve your business’s supply chain management. Connected worker solutions can identify which processes aren’t needed to reduce waste. It also gives real-time visibility into your supply chain to help you manage supply problems, optimize manufacturing processes, and adjust production schedules.

FAQs about improving production quality

How can the quality of the manufacturing industry be improved?

Measuring your current production processes to see which methods work can help improve product quality and increase the value of goods manufacturers make. You can strengthen the processes related to production by digitizing and automating them. Implementing a connected worker solution that offers real-time insights helps ensure that all goods meet quality standards and compliance criteria.

How do you ensure product quality in manufacturing?

There are a number of factors that can ensure product quality in manufacturing. We recommend following the five steps listed above to minimize defects as well as improve workflow and output.

What are 5 ways to improve production quality?

Assessing your current workflow, eliminating needless production processes, boosting work training, creating quality goals, and cutting production waste can all help improve production quality (see list above for a full description of each, as well as how implementing a connected worker solution can boost their overall impact).

Why is quality improvement important in manufacturing?

Enhancing production quality in manufacturing is a must as the industry moves towards fully connected enterprises, digital transformation, and automation. Businesses risk huge profit losses when quality standards are neglected in the creation of each product.

Digitize and Improve Production Quality with Augmentir

By digitizing and standardizing quality protocols, organizations can maintain compliance through an auditable and verifiable quality management system that gives workers access to the correct procedures as they need them with expert guidance. This ensures that tasks are performed in a standard manner to avoid errors on the production floor, reduce defects, and decrease resources lost to rework.

Refining your manufacturing methods can be difficult without the right technology. Augmentir’s AI-based connected worker solution makes streamlining and optimizing your production and quality procedures easier than ever before. Get in touch for a live demo today and learn why manufacturers are choosing Augmentir to help standardize and digitize quality processes!

 

See Augmentir in Action
Get in Touch for a Personalized Demo

 

Learn about what a skills matrix is, how these can be used and alternatives to help track employee skills.

A skills matrix is a grid that maps employees’ skills and qualifications. Companies use this information to manage, plan, and monitor current and desired skills for a position, team, department, or project.

Having a place to store each employee’s skills and experience level can help managers decide how to divvy up tasks. It’s also a great way to gauge areas of improvement.

A skills matrix is usually managed using a spreadsheet, but there are alternatives to skill matrices. For example, cloud-based skills management software can help identify and track employee competence and correlate it with actual job performance. The software can also help managers filter employee databases by skills to assemble teams or assign work based on specific qualifications.

skills matrix

To help you learn more about the skills matrix and its alternative, this article explores the following topics:

What is a skills matrix?

A skills matrix is a tool used by employers to track workers’ skills and expertise. Typically maintained in spreadsheet format, it usually includes skills that workers already possess, ones that are needed but underdeveloped, and those that are required to complete a project or perform a job function.

Each employee is given a rating on their proficiency in each skill and their interest in developing it. This gives managers great insight into who is qualified to complete certain tasks.

What are the benefits of using a matrix to track employee skills?

A skills matrix offers multiple benefits that can increase team performance and boost productivity. Some of its benefits include:

1) Brings awareness to employee skills

This tool shows what area a team member excels at and where they can improve. This can bring awareness to what skills need to be cultivated and what areas team members are already proficient in.

2) Sets team expectations

With the matrix outlining what skills are needed to complete a project, employees have a better idea of what’s expected and required to be proficient in their roles.

3) Shows where new hires are needed

The matrix gives employers a better idea if someone needs to be hired to fulfill a certain role. Knowing which skills are missing helps managers determine what kind of employee needs to be hired for a specific project.

How do I create a skills matrix?

Creating a skill matrix can provide a wealth of benefits to a business. You can set one up by following the steps below:

  1. Determine which skills are needed for your team based on job function or responsibility.
  2. Evaluate your workers’ skills and qualifications.
  3. Create a grading system to rate each employee’s current skill level.
  4. Fill in the missing criteria and manage the information in a central skills management system.

skills matrix for skills management

How can skills matrices be used in the manufacturing industry?

The manufacturing industry is always seeking skilled employees. Skilled matrices are an excellent way to cultivate the skills of current production plant workers and boost productivity.

This organizational tool also simplifies the hiring process. For example, it gives managers a better sense of what skill areas are lacking and who may be the right fit for the role.

The better equipped an employee is to do their job, the better a company’s bottom line will be.

What are the alternatives to using a spreadsheet for your skills and competency matrix?

If you’re looking for an alternative to using a spreadsheet to manage the skills of your team, consider cloud-based skills management software. These programs help businesses identify and track worker competency.

For example, this software maps skills from a centralized library to job profiles and individual employees to help managers analyze the abilities of their teams, the desired skills for each role and any skill gaps that exist. Learn more about skills management software in our guide.

Furthermore, skills management software not only allows you to efficiently manage skills for your frontline workers, it also enables you to use this skills mapping to intelligently assign work or identify upskilling or reskilling needs.
skills job proficiency mapping

 

Interested in learning how Augmentir’s connected worker platform can help you digitize and effectively manage skills within your manufacturing operation? Get in touch with us for a free demo.

 

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Manually managing and tracking production in manufacturing has become a thing of the past. That’s because manufacturers are adopting a new digital approach: paperless manufacturing.

Paperless manufacturing uses software to manage shop floor execution, digitize work instructions, execute workflows, automate record-keeping and scheduling, and communicate with shop floor employees. More recently, this approach also digitizes skills tracking and performance assessments for shop floor workers to help optimize workforce onboarding, training, and ongoing management. This technology is made up of cloud-based software, mobile and wearable technology, artificial intelligence, machine learning algorithms, and advanced analytics.

paperless manufacturing and digital factory

Paperless manufacturing software uses interactive screens, dashboards, data collection, sensors, and reporting filters to show real-time insights into your factory operations. If you want to learn more about paperless manufacturing processes, explore this guide to learn about the following:

What is a paperless factory?

A paperless factory uses AI-powered software to manage production, keep track of records, and optimize jobs being executed on the shop floor. Paperless manufacturing is intended to replace written record-keeping as well as paper-based work instructions, checklists, and SOPs, and keep track of records digitally.

For example, in most manufacturing operations, everything from quality inspections to operator rounds and planned and autonomous maintenance is done on a regular basis to make sure factory equipment is operating properly and quality and safety standards are met. In most manufacturing plants, these activities are done manually with paper-based instructions, checklists, or forms.

Operators and shop floor workers in paperless factories use software to execute work procedures and see production tasks in ordered sequences, which enables them to implement tasks accordingly. Workers are able to view operating procedures, or digital work instructions, using mobile devices (wearables, tablets, etc.) in real-time.

benefits of digital work instructions

Furthermore, paperless manufacturing incorporates the digitization of shop floor training, skills tracking, certifications, and assessments.  This digital approach uses skills management software helps optimize HR-based processes that were previously managed via paper or spreadsheets, and includes the ability to:

  • Create, track, and manage employee skills
  • Instantly visualize the skills gaps in your team
  • Schedule or assign jobs based on worker skill level and proficiency
  • Close skill gaps with continuous learning
  • Make data-driven drive operational decisions

digital skills management in a paperless factory

What are the benefits of going paperless in manufacturing?

There are a number of reasons for factories to go paperless, from cost-effectiveness to increased productivity and sustainability. A paperless system can revolutionize production processes, workforce management, and business operations.

Here are the top benefits of going paperless:

  1. Accelerate employee onboarding: By digitizing onboarding and moving training into the flow of work, manufacturers can reduce new hire onboarding time by 82%.
  2. Increase productivity: Digitizing manufacturing operations means no more manual, paper-based data collection or record-keeping. Workers have more time to run their equipment, execute shop floor tasks, and find solutions to problems.
  3. Boost data accuracy: People are prone to making mistakes, but digital data capture and validation can help offset human error and improve accuracy.
  4. Improved workforce management: Digital skills tracking and AI-based workforce analytics can help optimize production operations and maximize worker output.
  5. Manage real-time operations: Human-machine interface systems eliminate the need for paper, files, and job tickets. This means that workers can analyze inventory and other data in real-time.
  6. Save money: Although going paperless means that the cost of paper is eliminated, the savings extend beyond that. With greater productivity, operations in real-time, and improved production optimization, costs can be reduced in many areas.

How do you go paperless in manufacturing?

Going paperless starts with digitizing activities across the factory floor to increase productivity, and extending that value through a digital connection between the shop floor and enterprise manufacturing systems. We lay out below the four basic steps for how to go paperless in manufacturing:

Step 1: Digitize and connect your frontline operations.

Paperless manufacturing starts with the use of modern, digital tools that can connect, digitize, and optimize what your employees know and how they are doing on the job. Solutions that incorporate enhanced mobile capabilities and combine training and skills tracking with connected worker technology and on-the-job digital guidance can deliver significant additional value. A key requirement to start is to identify high-value use cases that can benefit from digitization, such as quality control or inspection procedures, lockout tagout procedures, safety reporting, or autonomous maintenance procedures.

Step 2: Augment your workers with AI and Connected Worker technology.

AI-based connected worker solutions can help both digitize work instructions and deliver that guidance in a way that is personalized to the individual worker and their performance. AI Bots that leverage generative AI and GPT-like AI models can assist workers with language translation, feedback, on-demand answers, access to knowledge through natural language, and provide a comprehensive digital performance support tool.

As workers become more connected, companies have access to a rich source of job activity, execution, and tribal data, and with proper AI tools can gain insights into areas where the largest improvement opportunities exist.

Pro Tip

Frontline operations software like Augmentir’s Connected Worker Solution helps you digitize and optimize the operations of your facility. Digitally manage safety, quality, operations, and maintenance procedures, skill requirements, training, and KPIs all through a visual interface. Connected worker solutions help digitally integrate your shop floor operations.

A

Step 3: Set up IoT sensors for machine health monitoring.

The industrial Internet of Things (IoT) uses sensors to boost manufacturing processes. IoT sensors are connected through the web using wireless or 4G/5G networks to transmit data right from the shop floor. The use of machine health monitoring tools along with connected worker technology can provide a comprehensive shop floor solution.

Step 4: Connect your frontline to your enterprise.

Digitally connected frontline operations solutions not only enable industrial companies to digitize work instructions, checklists, and SOPs, but also allow them to create digital workflows and integrations that fully incorporate the frontline workers into the digital thread of their business.

The digital thread represents a connected data flow across a manufacturing enterprise – including people, systems, and machines. By incorporating the activities and data from these previously disconnected workers, business processes are accelerated, and this new source of data provides newfound opportunities for innovation and improvement.

 

Augmentir provides a unique Connected Worker solution that uses AI to help manufacturing companies intelligently onboard, train, guide, and support frontline workers so each worker can contribute at their individual best, helping achieve production goals in today’s era of workforce disruption.

Our solution is a SaaS-based suite of software tools that helps customers digitize and optimize all frontline processes including Autonomous and Preventive Maintenance, Quality, Safety, and Assembly.

paperless factory

 

Transform how your company runs its frontline operations. Request a live demo today!

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Asset maintenance refers to everything that goes into keeping your manufacturing assets in tip-top shape. With machinery, for example, asset maintenance means conducting frequent inspections and repairs. With office space, this term involves maintaining a clean, safe, and productive workplace. With products, it includes checking finished goods for any deficiencies or errors.

In a nutshell, asset maintenance helps prolong the performance and lifespan of equipment, machinery, goods, and more. Performing this strategy ensures that your essential business resources continue functioning smoothly and properly.

Learn the best practices for increasing asset maintenance performance:

Best practices for optimal asset maintenance performance

Implementing key best practices can improve asset maintenance in manufacturing. We’ve put together five crucial strategies to ensure your manufacturing firm is performing at its best while minimizing costs:

1. Gather as much info as possible

Gathering data on assets can help management make better informed production decisions. Asset tracking is a great technique to accomplish this.

2. Create a preventive maintenance schedule

The data that’s been collected will make it easier to create a preventive maintenance schedule. To create one, start by organizing asset data and analyzing the info you’ve amassed (e.g., how often each item must be checked and maintained). Lastly, prioritize your most important assets and allocate funds to maintain them.

schedule and audit asset maintenance work

3. Train workers

Investing in your employees pays off. Procedural documentation and training will help ensure that all maintenance work is thoroughly performed and recorded. Skills management software can help with ongoing management and tracking of employee skills and training requirements.

4. Apply an inventory tracking system

There is nothing worse than beginning a project only to find out that you don’t have all the moving parts to complete it. An inventory system helps reduce the chances of missing crucial product information and enables you to better track company assets.

5. Track asset maintenance key performance indicators (KPIs)

KPIs such as mean time between failures (MTBF), overall equipment effectiveness (OEE), and work order resolution time can give a performance review on how well your assets are doing. They’re also great at pinpointing which areas could benefit from predictive maintenance, the process of checking for deficiencies to avoid future machine breakdowns.

Pro Tip

Asset management software like Augmentir’s Connected Worker Solution helps you simplify the operations and maintenance of your facility. Manage work and maintenance procedures, skill requirements, training, KPIs, and preventive maintenance schedules all through a visual interface. Connected worker solutions help integrate your CMMS with your shop floor operations.

A

Advantages of asset maintenance

The maintenance of assets in manufacturing consists of regularly inspecting, repairing, and replacing equipment and other assets to confirm that everything is in workable condition.

Advantages of asset maintenance:

  • Enhanced workplace safety
  • Greater equipment reliability
  • Longer machine lifespan
  • Lower maintenance costs
  • Improved productivity
  • Better regulatory compliance

Asset maintenance tools and how Augmentir can help

Manufacturers are encouraged to manage and track assets to limit product flaws, prevent machine failure, and improve overall productivity. However, in today’s digital age, especially with more mobile devices, complex cloud-based technologies, and software updates, handling assets has become much more complicated.

This is where Augmentir’s AI-powered connected worker solution, or asset management software, comes in. Our solution allows manufacturing facilities to better monitor their assets and manage them effectively with easy-to-use customizable dashboards and real-time insights.

Asset maintenance with Augmentir

Ours is the world’s only connected worker suite that provides an overarching view of an asset’s life cycle. Accurate digital asset records can help manufacturers with resource planning. In addition, our tool helps with asset record keeping so that you don’t have to worry about not meeting regulatory compliance requirements.

Though a manufacturing firm could use a spreadsheet to track its assets, our digital solution gives workers the ability to evaluate asset-specific data and make better decisions about how to manage each one.

Transform how your company runs its maintenance operations. Request a live demo today!

 

 

See Augmentir in Action
Get in Touch for a Personalized Demo