Posts

Learn how to improve quality control and assurance in the food industry with digital solutions from Augmentir.

Following quality control (QC) and quality assurance procedures in the food industry is imperative to ensure product quality and consumer satisfaction. Today’s consumers demand safe, reliable goods that meet all quality inspection protocols. The last thing you want is for a product to get recalled because of potential health concerns.

According to Food Manufacturing, quality control is one of the most important aspects of the food and beverage industry. Manufacturers who perform routine inspections of products during each stage of the production process significantly increase their chances of delivering items that are free of health hazards and liabilities. But beyond avoiding these concerns, standardizing and digitizing quality procedures benefits the entire operation.

Ultimately, preventing and catching quality issues can boost product quality, reduce waste, raise profits, increase brand reputation, and avoid media or food safety disasters. Learn more about QC and assurance in the food industry and how to improve it as we discuss:

quality control food industry

Types of quality control measures to take

There are certain QC measures you can take to ensure that all goods meet quality standards, from regular machine inspections to worker training. They fall into two general categories: preventative and reactive.

Preventative (proactive) quality control: Minimizing the number of deficiencies begins with implementing preventative QC solutions. When workers can catch mistakes before they even happen, they prevent product defects. Preventative QC measures should be practiced on a routine basis and can range from inspecting machines and equipment to offering employee training opportunities. By providing workers with real-time information and guidance through mobile, connected worker solutions, manufacturers enable them to make better decisions about product quality, reducing the risk of errors and identifying potential quality issues before products are shipped to customers, reducing the risk of product recalls, and preserving consumer trust.

Reactive quality control: Catching every defect on the production floor is nearly impossible, even if the most fool-proof strategies are taken. That’s why creating a plan of action ahead of a crisis can help solve quality issues as they happen.

What to put in your plan will depend on the potential problems. For example, you can include specific instructions on what to do if machinery breaks down or stops unexpectedly. It’s vital to collect any data at this stage. Analyzing this data can help you improve preventative quality control in the future to make sure the same problems don’t happen again.

Pro Tip

By utilizing AI and modern, digital technologies, companies can connect, engage, and empower frontline workers to drive quality improvements, resolve quality issues faster, and share timely insights with teams across the value chain.

A

Keep in mind that practicing quality control in the food industry should be part of every manufacturing process, from product ideation and development to production and delivery. Problems can develop at any time, so it’s crucial to follow protocols at every stage of production to prevent even the slightest of mistakes.

All workers should also uphold QC and assurance protocols in their everyday tasks to ensure continuous product improvement.

Better organization of equipment can also help workers understand how the action of one affects the other to solve any potential problems. This is another benefit of integrating your asset hierarchy with a connected worker solution. In a nutshell, strong hierarchies are a solid foundation for proper maintenance management and reliability.

How to improve QC and assurance procedures in food production

Effective quality control and assurance procedures prevent defective food products from making their way into grocery stores and homes. That’s why manufacturers should document the quality of their goods at every stage of the operational process. Strategies like first time quality (FTQ), or first time right, plans coupled with smart, connected solutions help decrease product deficiencies and increase customer satisfaction.

Manufacturing firms in the food industry must follow specific requirements set by the Food and Drug Administration (FDA), Good Manufacturing Practices (GMP) system, and the Hazard Analysis and Critical Control Points (HACCP). The guidelines set by these regulatory bodies can give businesses a better idea of how their processes should look and what data they need to collect and report.

Data should be collected for real-time production processes. These vary by product but may range from product chilling and thermal processing to testing raw materials for metal toxins and other chemical deposits.

The following steps provide a roadmap for how to improve quality control in the food industry.

Step 1: Source the correct ingredients

A successful assembly line run begins with finding and using the correct ingredients. Some things to think about when deciding which ingredients to choose: where the raw material was sourced, when, and its condition.

Step 2: Include an approved supplier list

Make sure that each ingredient has an approved supplier list. A good rule of thumb is to include three vendors per ingredient and record the ingredient with each supplier’s name, address, and code number on the list. The more information you include, the better. Having an approved vendor list ensures that all parties are properly vetted by the manufacturing firm and meet its requirements for quality and distribution.

Step 3: Document product and recipe creation

Documenting how each food item is made and its recipe helps set the quality standards for finished goods. This documentation can also be useful when improving product development in the future. Your document should include the types of ingredients used, their codes, batch yield, percentage formula, and more.

Step 4: Catalog production procedures

It’s also critical to log all the details of a production process, including how materials should be delivered, the appropriate conditions for storing food, what order each ingredient should be added to the batch, what tools are needed, and who is in charge of each task.

Note that this step is different from documenting product and recipe development because it includes the actual instructions for carrying out each procedure. For example, a worker may be asked to preheat the oven to a certain temperature as part of ensuring the food is ready for customer distribution.

Step 4: Record real-time processes

Machine operators should record in real-time every detail of how goods are created during actual production. This can include factors like product size, weight, expiration date, equipment conditions, and more.

Step 5: Digitize assurance and inspection processes

AI and smart, connected worker systems help digitize and link inspections and other quality control procedures. This creates an additional layer of defense, protecting customers and preventing quality issues before they can impact production.

How Augmentir helps with quality control and assurance

Augmentir offers a smarter way to improve quality control in the food industry by effectively standardizing and optimizing quality assurance and inspection procedures for all frontline workers. With our smart, connected solutions coupled with AI-powered software, food manufacturers have improved quality control and assurance by:

  • Tracking and analyzing data to identify trends and opportunities for improvements
  • Reducing human error in inspections by standardizing and improving training procedures and processes
  • Transforming connected workers into human sensors who can proactively address quality and safety events that surface during manufacturing operations

standardize and digitize quality assurance procedures

 

Our AI-powered connected worker solutions, provide digital work instructions to help employees better perform inspection checks and reduce the number of production errors and rework.

These customized solutions also include:

  • Digital standard operating procedures (SOPs) for how to complete assembly line tasks. These step-by-step instructions can greatly improve workflow efficiency, increase regulatory compliance, and reduce mistakes on the shop floor.
  • Digital workflows that convert your paper-based processes to digital work instructions and personalize them to the needs of each worker.
  • Enhanced product traceability to decrease equipment setup time, reduce process inconsistencies, and better meet customer expectations. Our digital instructions help you to easily track materials from the supply chain, inventory, and across every production process.

If you are interested in learning why companies are choosing Augmentir to help improve their quality control and assurance processes, check out our quality use cases – or reach out to schedule a live demo.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

 

Learn how to write manufacturing SOPs and the benefits of having standard operating procedures in a manufacturing operation.

Standard operating procedures, or SOPs, will change the way you run your manufacturing operations.

SOPs are imperative to a properly organized management structure. They are step-by-step guidelines workers must follow when carrying out tasks to standardize work and are designed to meet industry regulations.

Essentially, they provide general info about assignments, including the tools, methods, or machinery needed to complete projects. SOPs indicate what the task is, who will perform it, how it should be completed, and when it should be completed.

manufacturing sop

For example, manufacturers may write SOPs for employee training to reduce risk and injury. Leadership may also use procedures to assign goals and measure employee performance.

Read on to find out more about the benefits of manufacturing SOPs and how to write them by exploring the following topics:

Advantages of Implementing Standard Operating Procedures

According to Forbes, a comprehensive SOP keeps workers on the same page and improves efficiency and accuracy. Without documented procedures, there is no way to set proper standardized processes and workers might try to complete jobs in non-standard methods, which leads to disruptions in the production processes and causes all sorts of quality issues in a manufacturing environment. Thankfully, SOPs work to prevent that from happening.

Some of the advantages of using SOPs include:

  • Meets regulatory compliance: Product inspectors constantly ask to review SOPs when conducting audits. These serve as the point of reference for whether specific measures followed meet industry guidelines.
  • Standardizes tasks: The point of written procedures is to establish a standard way of completing tasks. They enable tasks to be performed in the same way across the company.
  • Improves accountability and tracking: SOPs define who is responsible for a work order, maintenance check or inspection. This reporting can improve accountability across departments. If a task wasn’t completed accordingly or a procedure was missed, management can take necessary steps to prevent it from happening again.
Pro Tip

Digitized SOPs can further improve tracking and traceability features, helping manufacturers comply with regulations and quality standards. With digital SOPs it becomes easier to maintain records of every step in the production process, including who performed each task and when.

A

How to write a manufacturing SOP

Writing a comprehensive set of SOPs can help workers perform tasks in the safest and most efficient way possible. Although there isn’t an official way to write procedures, you can follow certain steps to make them more effective:

Step 1: Establish a goal.

It’s important to think about what you want your SOP to accomplish. Regardless if you’re starting a new process or improving an existing one, figuring out the end goal will make it easier to complete the document.

Step 2: Pick a format.

There are different formats you can use to write your document: step-by-step, hierarchical, narrative, etc. We recommend the sequential step-by-step format for its straightforwardness.

Step 3: Write the procedures.

Make sure your procedures are clear, concise, current, consistent, and complete.

Step 4: Review and update.

It’s important to review your SOP for any discrepancies and update them if necessary. Consider asking fellow leaders knowledgeable in procedure creation to read them over.

Why SOPs are Important in Manufacturing

Compliance with manufacturing SOPs is crucial for a number of reasons, including:

  • Prevents accidents and ensures worker safety
  • Promotes worker consistency
  • Improves product quality
  • Protects your business’s reputation

SOPs are a critical component of manufacturing operations because they provide a structured framework for achieving consistent quality, safety, and efficiency in the production process. They help manufacturers meet regulatory requirements, reduce errors, and ensure that employees are trained to perform tasks consistently and safely.

Digitizing Manufacturing SOPs with Connected Worker Solutions

Using connected worker technologies to create digital SOPs can significantly improve their impact on manufacturing by enhancing accessibility, effectiveness, and overall utility.

Through digitization and smart, connected worker technology manufacturers can improve SOPs with features like real-time access, remote collaboration and guidance, data-driven insights, workflow automation, enhanced training, traceability and compliance, and more. Essentially, with these advanced technologies, manufacturing organizations can augment and support their workers with optimized processes and SOPs creating an environment of continuous improvement.

Augmentir offers customized AI-powered connected worker solutions that transform how you write and create manufacturing standard operating procedures. Request a live demo today to learn more about why leading manufacturers are choosing our solutions to improve their manufacturing processes.

 

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn how continuous and workflow learning can help modernize employee training in the manufacturing industry.

Staying ahead of the curve in today’s manufacturing marketplace means that businesses need to innovate and adapt. To accomplish this, organizations must have a skilled workforce and ongoing training and workforce management processes to support continuous learning and development.

Modernizing training cultivates employee skillsets by implementing continuous learning in the flow of work.

modernize manufacturing training with continuous learning

Continuous learning is the process of attaining new skills on a constant basis. Workflow learning involves educating yourself on the job using resources and self-directed learning materials. Done together, this modern training approach can help streamline productivity.

If you want to learn how to improve manufacturing training with continuous learning and workflow learning, explore this article that answers the following:

What is continuous learning?

Continuous learning in manufacturing involves enabling workers to learn new skills regularly. It’s a great way to improve employee performance and innovation. According to Forbes, embracing a culture of continuous learning can help organizations adapt to market demands, foster innovation, as well as attract and retain top talent.

Learning can come in different forms, from formal course training to hands-on experience. Employees are encouraged to be self-starters who want to evolve their skills on an on-going basis. A good example of a continuous learning model is everboarding; everboarding is a modern approach toward employee onboarding and training that shifts away from the traditional “one-and-done” onboarding model and recognizes learning as an ongoing process.

How can continuous learning be used in manufacturing?

When businesses don’t support continuous learning, manufacturing processes stagnate. This contributes to a lack of innovation and hinders potential opportunities for success that a company may experience.

In a nutshell, the more workers know and the more they can accomplish, the more they can contribute to business growth. This may consist of employees taking an online course or learning a new technique hands-on, no matter what department they’re in.

For example, assembly line workers may learn new manufacturing processes to ensure everything is functioning properly. Meanwhile, operators may study the latest machinery to learn new tricks of the trade.

What is workflow learning?

Workflow training in manufacturing involves learning while doing. This means that workers pick up new skills while on the job through hands-on experience.

The key to workflow learning is that it happens while employees perform their everyday tasks.

Many workers in the manufacturing industry work in shift-based environments, making it difficult for them to attend traditional classroom-based training sessions. With workflow learning, organizations can incorporate more learning processes into the everyday workday of frontline workers – essentially bridging the gap between knowing and doing. This “active learning” aligns with the Pyramid of Learning visual model that illustrates the different stages of learning and their relative effectiveness.

pyramid of learning

Active learning involves the learner actively engaging with the material, often through problem-solving, discussion, or application of the knowledge while they are on the job.

In general, active learning is considered more effective than passive learning in promoting deep understanding and retention of information. Therefore, learning leaders often strive to design learning experiences that involve higher levels of active learning, moving beyond the lower levels of the pyramid and promoting critical thinking, creativity, and problem-solving skills.

How can workflow learning be used in manufacturing?

Workflow learning consists of using resources at your disposal to complete tasks. This strategy is sometimes referred to as performance support.

For example, workers can look up answers to questions, steps of a process, or new services while performing their jobs instead of interrupting their workflow to go to a class or training session.

Pro Tip

Active, or workflow learning can be implemented with mobile learning solutions that leverage connected worker technology and AI to provide workers with bite-sized, on-demand training modules that they can access on smartphones or tablets. These modules can be developed with customized learning paths that are focused on the type of tasks and work employees are doing on the factory floor.

A

How can technology improve manufacturing training?

The nature of manufacturing training is changing in the age of artificial intelligence. Today, many training processes can be streamlined and optimized using digital and smart, connected worker technologies.

For instance, data collected from everyday manufacturing processes can polish training programs online. Experienced workers can share best practices on customized dashboards for other employees to access. These can be updated in real-time and show changes highlighted to better optimize manufacturing processes.

Digital training tools can also help improve learning speed and retention. For example, workers who need visuals or real-world scenarios can assess them using AI-powered software to maximize their training.

 

Augmentir is the world’s leading AI-powered connected worker solution that helps industrial companies optimize the safety, quality, and productivity of the industrial frontline workforce. Contact us for a live demo, and learn why leading manufacturers are choosing us to elevate their manufacturing operations to the next level.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn why integrations are key to the success of connected worker platforms, what systems should be integrated, and the benefits of a fully integrated connected worker solution.

Unlocking the potential of connected worker platforms becomes a game-changer when integrated with enterprise systems, giving them a live, closed loop connection to frontline processes and operations. This creates a truly connected enterprise that links diverse systems with the frontline workforce, paving the way for heightened efficiency, productivity, and safety.

connected worker platform integrations

However, a majority of connected worker platforms overlook the fact that connectivity doesn’t end with simply linking workers to their platform. They fail to recognize the immense benefits that live connections to enterprise systems of record bring to frontline business processes and activities.

Manufacturing success hinges on the seamless integration of connected worker platforms with legacy and enterprise systems to provide adequate support to frontline workers, giving them access to data and knowledge that can boost their efficiency and keep them safe.

Read below for more information on connected worker platform integrations; what they entail, which enterprise systems are essential for integration, and how AI-powered technology improves impact on frontline manufacturing activities.

Connected Worker Integrations: More than just an API

In manufacturing, it is critical that connected worker platforms are integrated with various enterprise systems to streamline operations and ensure that workers have the data and information they need at their fingertips. As critical as this is, most connected worker vendors believe that providing an open API is sufficient, and even boast that they integrate to enterprise systems, when in fact they place this burden on their customers.

Having an API is not enough

There are several not-so-obvious aspects to connected worker platform integrations, including:

  • Connected worker integrations with enterprise applications, even streamlined ones, have essential requirements such as logic that needs to be written, customized, run, and supported. Most, if not all, of this logic is initiated by the connected worker platform, propagating events and data from shop floor processes to the associated enterprise system of record.
  • Connected worker platforms with just an “API” require all of this functionality to be developed, hosted, and supported externally. The responsibility is then on the customer to build a custom product and select and support the hosting environment. This effort (building, hosting, and support) can cost between $50K and $150K to build and test, and then another $50K – $150K annually for 5 x 9 support. And, the customer is responsible for maintaining an SLA acceptable to the business (99.9% being typical).
Pro Tip

It’s critical that connected worker platforms include “platform-as-a-service” (Paas) capabilities that provide the ability to write, support, and execute both standard and custom integrations. These can be done by the platform provider, the customer, as well as third-party system vendors and system integrators. Providing PaaS capabilities puts the responsibility on the vendor for operating the integration service, and maintaining SLAs, geo-redundancy, disaster recovery, and privacy and security. In short, just saying “we have an API” places an undue burden on customers, and prevents building the sustainable connected enterprise necessary to remain competitive in today’s global economy.

A

Which Enterprise Systems Should You Integrate

In any industrial environment, connected worker platforms should be integrated with various systems to support operations, help with cooperation and communication, and gain valuable insights into frontline manufacturing processes. These integrations streamline activities, improve efficiency, and provide a unified digital environment that empowers frontline workers.

This concept of a connected enterprise spans several initiatives within an organization: assets and equipment, the products being manufactured, the end customer, operations, workers, and the entire supply chain, and is highlighted below using the Industrial Transformation (IX) Reference Architecture from LNS Research.

connected worker enterprise system integration

Examples of enterprise management systems of record that are key to connected worker success and should be integrated are:

  • ERP (Enterprise Resource Planning)
  • EAM (Enterprise Asset Management)
  • HCM (Human Capital Management)
  • HR, Training, and LMS (Learning Management System)
  • QMS (Quality Management Systems)
  • MES (Manufacturing Execution System)
  • CMMS (Computerized Maintenance Management System)
  • Supply Chain Management

Enterprise systems such as ETQ, Workday, UKG, SAP, Oracle, IBM Maximo, Microsoft Dynamics 365, Salesforce, and ADP provide transformational value for a manufacturing company if they can be connected into frontline operations. By integrating connected worker platforms with these systems, manufacturers can create an interconnected environment that supports frontline workers and drives operational excellence. Ultimately, integration enhances collaboration, workforce visibility, decision-making processes, and overall operational efficiency, making connected worker platforms an indispensable component for manufacturing organizations.

Improving Integration Success Through Augmentir

At Augmentir, we see integrations differently than other connected worker platforms. Our rich history of building integrations in the manufacturing space enabled us to design a connected worker solution that easily, bi-directionally, and securely integrates the enterprise systems of record to create closed loop processes involving the frontline workforce.

Augmentir has internal PaaS services to run connectors that we build and support for popular enterprise applications like SAP, Salesforce, ETQ, Oracle, IBM Maximo, and more. Additionally, our PaaS enables custom integrations to be built and executed for custom, and niche applications. All third-party integrations running in the Augmentir connected worker platform carry the same SLA and geo-redundant support. By facilitating connected worker platform integrations with enterprise systems in this way, we have provided leading manufacturers with increased workforce visibility, improved productivity, digitized and standardized processes, enhanced training and collaboration, and more.

augmentir enterprise integration

Furthermore, because we are the leading AI-powered connected worker provider, we have brought innovative generative AI technologies such as AI-driven analytics, machine learning algorithms, NLP, predictive maintenance, and industrial AI copilots to improve connected worker integrations with enterprise systems, providing real-time guidance, enabling predictive analysis, and enhancing communication and collaboration among workers.

Schedule a demo to learn more about our AI-powered connected worker solutions and how they are drastically improving frontline processes, training, and manufacturing activities.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

AI-powered technology may be the missing puzzle piece for today’s workforce crisis.

It wouldn’t be fair to attribute all of manufacturing’s current labor shortage woes to the pandemic–there are a lot of factors contributing to this frustrating situation, and many of them were looming long before we ever heard of COVID-19. Did it make things worse? Probably. And the forecast doesn’t look very sunny if you believe what analysts have to say about it. However, despite the current crisis, there is hope yet for manufacturing, specifically in the form of AI and Connected Worker Technology.

Sure, the face of the workforce has changed dramatically. The pool of potential laborers has shrunk. Businesses are being forced to hire people traditionally considered under-qualified. And that leads to a whole host of other complications, including a drop in operational efficiency, a rise in safety issues, and more. The pessimists out there would only see the threat to the global market these challenges pose–the manufacturing industry makes between 11 and 12 percent of the US economy after all.

Good thing we’re optimists at heart! Behind every challenge is an opportunity, as far as we’re concerned. And when it comes to this challenging labor market in particular, we see a huge opportunity for businesses to work with what they’ve got, and still reach operational goals. We have the potential to assess how every worker performs on the job, regardless of the experience and skill set they bring on day one, and use that information to improve individual and enterprise-wide performance. Puts a new light on the labor shortage, doesn’t it?

You can’t fix what you can’t see.

We know using data is important to directing and improving operations–that’s business best practices 101. But insights drawn are only as good as the data itself. And even though there can’t be many businesses out there who haven’t yet jumped on the digital transformation bandwagon, we suspect a lot still rely on outdated data collecting and reporting mechanisms. Those digital spreadsheets had their moment, but we’ve got better options now. Maybe you opted for a Bluetooth software program or distributing a digital survey for your workers. But even with those innovations, what do these data indicators really tell you? Is this reliable and usable information? We didn’t think so either.

Imagine what you could do with real-time data, rather than a summary of operational KPIs at the end of set periods? Even better–imagine capturing the performance metrics of each individual worker rather than their self-generated assessments and observations and having the potential to use that knowledge to improve their skill set and operational proficiency. That’s when data becomes intelligence. And that intelligence has the potential to become so valuable to your enterprise that you’ll wonder how you ever operated without it.

Not convinced you could benefit from data at that level of individual performance? Let us draw an analogy we think you’ll appreciate.

Think of each worker as a newly licensed driver; what happens after passing the road test?

Remember the day you got your driver’s license? We spent hours, if not days and weeks practicing behind the wheel, eagerly waiting to be evaluated by a driving instructor. And let’s be honest, plenty of us winged it, too. Either way, once you show them you can do a three-point-turn and know to stop at the flashing pedestrian crossing sign, everyone walks away with the proof of their proficiency–a driver’s license. 

Then what happened? Nothing. Maybe a celebratory high-five and then eventually years of driving. In one, five, or ten years, what do we know about each person’s capabilities? Unless they’ve wracked up a stack of tickets for traffic violations, we don’t know anything. For all we know, they haven’t sat behind the steering wheel since passing. There is no mechanism to re-assess whether drivers are highly skilled or at-risk of creating an accident in operations.

Now what if we looked at our frontline workers through that lens? You know when they were hired that they could perform X, Y and Z. Some could do even more. But what about after that? What if you could assign an AI-based driver instructor to follow each new driver around for ongoing assessment and intervention in the moment of need?

Put smart connected worker technology in the passenger seat

Adopting connected worker technology powered by artificial intelligence (AI) increases the reliability and credibility of data by analyzing employee performance in ‘real-time.’ That individualized data can be used to connect workers with a company’s digital library of training tools and resources, having an immediate impact on operational proficiency and cultivating a healthy learning environment for workers.

Connected worker technology that leverages AI offers self-guided learning processes when opportunities are identified, reduces human error and improves safety, provides updates on pressing issues and equipment failures and access to a variety of applications. Who wouldn’t want to work for an organization like this? One that offers a high probability of job satisfaction and encourages personal skill development? A culture like that can help the operation on many levels, from reducing operational costs to attracting new employees. 

What now? There is only one connected worker solution that can provide this level of intelligence on your workforce–contact us to learn more about how Augmentir can benefit your business and ask for a demo!

August 13, 2021

 

Augmentir was recently recognized by Gartner in four separate Hype Cycle reports that cover technology innovation in manufacturing. These four reports include:

  • Hype Cycle for Manufacturing Digital Transformation and Innovation, 2021
  • Hype Cycle for Manufacturing Operations Strategy, 2021
  • Hype Cycle for Manufacturing Digital Optimization and Modernization, 2021
  • Hype Cycle for Frontline Worker Technologies, 2021

In these reports, Gartner highlights Augmentir as a key software vendor in the Connected Factory Worker and Immersive Experiences in Manufacturing Operations categories.

  • Connected Factory Worker: Connected factory workers use various digital tools to improve the safety, quality, and productivity of the jobs they perform. This technology helps connect workers to the “digital fabric” of the business, providing insight into the tasks they perform so that they can be optimized and continually improved on.
  • Immersive Experiences in Manufacturing Operations: According to Gartner, immersive experiences refer to enabling the perception of being physically present in a nonphysical world or enriching people’s presence in the physical world with content from the virtual world. Gartner sees using immersive experiences for quality and maintenance tasks, remotely connecting and collaborating with employees that are not able to be on-site, or wearables for safety management.

These hype cycle reports and innovation profiles are provided by Gartner to help organizations decide which new innovations and technology to adopt, as well as what value they can provide to their manufacturing operations.

Digital Transformation in Manufacturing

According to Gartner, the manufacturing industry is being transformed by new business models and strategic, innovative technologies that fit within Industrie 4.0. Manufacturers can capitalize on advancements made in artificial intelligence (AI), visualization, collaboration, and greater connectivity across enterprises.

This was the focus in Gartner’s recently published reports, which revealed opportunities for manufacturing leaders to gain business advantages through concepts and technologies that improve productivity and decision making. Besides adding value to manufacturing businesses, they increase windows of competitive advantage.

The Connected Worker – A first step for Digital Transformation in Manufacturing

Manufacturers are beginning to recognize just how integral frontline workers are to their company’s digital fabric and that overlooking these workers has caused their digital transformation efforts to fall short of their objectives.

These same industry leaders are now investing in an integrated approach – empowering their frontline teams with connected worker solutions that utilize technology such as mobile and wearable devices, augmented and mixed reality (AR/MR), remote collaboration tools, and artificial intelligence (AI). Connected worker solutions that bring together these technologies are helping to connect a new class of workers and are allowing organizations to proactively and continually deliver the right level of training, support, guidance, and improvement.

Optimizing Worker Performance with AI

As workers become more connected, companies have access to a new rich source of activity, execution, and tribal data, and with proper AI tools can gain insights into areas where the largest improvement opportunities exist. Artificial Intelligence lays a data-driven foundation for continuous improvement in the areas of productivity, quality, and workforce development, setting the stage to address the needs of a constantly changing workforce.

Our view at Augmentir is that the purpose of a connected worker platform isn’t simply to deliver instructions and remote support to a frontline worker, but rather to continually optimize the performance of the connected worker ecosystem. Artificial intelligence is uniquely able to address the fundamental macrotrends of skills variability and the loss of tribal knowledge in the workforce, and creates a foundation for data-driven improvements to operational performance and continuous improvement.

“AI will play a critical role in the long-term success of connected factory workers. As more information is curated and made available, algorithms must be continually trained in alignment with continuous improvement initiatives, creating the potential for enhanced root cause analysis.”

Gartner

With an ecosystem of content authors, frontline workers, subject matter experts, operations managers, continuous improvement engineers, and quality specialists, there are dozens of opportunities to improve performance using AI. For example, after Augmentir is deployed for a number of months, our AI engine will start identifying patterns in the data that will allow you to focus your efforts on the areas that have the biggest customer satisfaction, productivity, and workforce development opportunities. This will allow you to answer questions such as:

  • Where should I invest to get the biggest improvement in operational performance?
  • What manufacturing tasks have the largest productivity or quality opportunity?
  • Where would targeted training give me the biggest return?

Augmentir’s AI continuously updates its insights to enable companies to focus on their largest areas of opportunity, enabling you to deliver year over year improvements in key operational metrics.

Interested in learning more?

If you’d like to learn more about Augmentir and see how our AI-Powered connected worker platform improves safety, quality, and productivity across your workforce, schedule a demo with one of our product experts.

 

August 16, 2021

Augmentir was once again recognized by Gartner as a key vendor for Connected Factory Worker technology. In the latest Gartner Hype Cycle for Consumer Goods, Augmentir was highlighted as an important vendor for Connected Factory Worker software and Immersive Experiences in Manufacturing. This marks the seventh time in 2021 that Augmentir has been recognized by Gartner for leadership in emerging technologies for manufacturing.

Digital Technology – A Key Priority for Consumer Goods CEOs

This Gartner report identifies technology as a key priority for consumer goods CEOs, and states that “79% of Consumer Goods CEOs plan to increase their investment in digital capabilities.”

According to the hype cycle report, “Investments in long-delayed digital initiatives came to the forefront due to the pandemic.” Digital transformation initiatives were put into focus and brought to the forefront due to the impact of the pandemic, increased remote working, and supply chain disruptions, and many leading consumer goods manufacturers were “jolted to invest in long-delayed digital plans.”

Gartner highlighted Connected Factory Workers and Immersive Experience in Manufacturing as offering transformational benefits for consumer goods manufacturers, and mentions Augmentir as a key software vendor in each category.

  • Connected Factory Worker: Connected factory workers use various digital tools to improve the safety, quality, and productivity of the jobs they perform. In consumer goods manufacturing, this may include enabling digitization of maintenance procedures, changeover procedures, EHS lockout/tagout procedures, quality checklists, and plant walkabouts via digitized step by step instructions or guided workflows. This technology helps connect workers to the “digital fabric” of the business, providing insight into the tasks they perform so that they can be optimized and continually improved on.
  • Immersive Experience in Manufacturing Operations: According to Gartner, immersive experiences refer to enabling the perception of being physically present in a nonphysical world or enriching people’s presence in the physical world with content from the virtual world. Gartner sees using immersive experiences as important for “accelerating problem solving and broadening continuous improvement dialogue through virtual or remote access.” This approach is being use for quality and maintenance tasks, remotely connecting with employees that are not able to be on-site, or wearables for safety management.

These hype cycles and innovation profiles are provided by Gartner to help organizations decide which new innovations and technology to adopt and when, as well as what value they can provide to their manufacturing operations.

Accelerating Your Digital Journey with Augmentir

Many leading consumer goods manufacturers, including Colgate-Palmolive, have adopted Augmentir to connect their frontline workforce and accelerate their digitization efforts. Augmentir’s AI-based connected worker platform offers connected worker technology with augmented work instructions. Equipped with digital devices that could include tablets, mobile phones, or even AR-enabled industrial smart glasses, frontline workers are able to receive fully augmented, guided instructions on any device to improve productivity, quality and allow workers to perform their jobs more independently. These help guide workers with visual aids, AR/MR experiences, and contextual information.

For example, since the selection of Augmentir in November 2020, Colgate has already seen tremendous progress towards their digital transformation goals and has digitized over 1000 workflows across 10 global plants, resulting in significant value and productivity improvements in maintenance tasks, line changeovers, and shift changes.

Optimizing Worker Performance with AI

Gartner further recommends that consumer goods manufacturers: “Make your focus the creation of a “data-driven” culture in manufacturing operations.” This includes not only integrating factory workforces with their virtual and physical surroundings, but also driving a culture change towards data-driven performance optimization and workforce development.

Artificial Intelligence (AI) is a key foundation for data-driven transformation within the manufacturing workforce.

As workers become more connected, companies have access to a new rich source of activity, execution, and tribal data, and with proper AI tools can gain insights into areas where the largest improvement opportunities exist. Artificial Intelligence lays a data-driven foundation for continuous improvement in the areas of productivity, quality, and workforce development, setting the stage to address the needs of a constantly changing workforce.

Our view at Augmentir is that the purpose of a connected worker platform isn’t simply to deliver instructions and remote support to a frontline worker, but rather to continually optimize the performance of the connected worker ecosystem. AI is uniquely able to address the fundamental macrotrends of skills variability and the loss of tribal knowledge in the workforce. With an ecosystem of content authors, frontline workers, subject matter experts, operations managers, continuous improvement engineers, and quality specialists, there are dozens of opportunities to improve performance.

Interested in learning more?

If you’d like to learn more about Augmentir and see how our AI-Powered connected worker platform improves safety, quality, and productivity across your workforce, schedule a demo with one of our product experts.

AI-powered technology may be the missing puzzle piece for today’s workforce crisis.

AI-powered technology may be the missing puzzle piece for today’s workforce crisis in manufacturing.

Is it just us or does recruiting, training, and retaining top talent today feel a lot like searching for that one elusive puzzle piece? The seismic shift in the workforce is forcing us to get creative and be adaptable like never before.  It’s a new generation and if we want to be competitive in hiring in this ultra-competitive environment, we need to re-access how we train, develop, and retain talent, embrace the variable nature of the labor market, and meet workers where they are. 

We can no longer try to force-fit the old model of staffing and training into a space that looks drastically different. It’s not just about a labor shortage or the supply chain challenges created by the pandemic. Workers themselves are changing. What they want from work, and how they want to work.

The solution to this head-scratching puzzle? AI-based technology. Digital work instructions and individualized training and on-the-job support can improve productivity, reliability, independence, and safety for every worker. It offers flexibility in scheduling for operations managers. It reduces downtime. All of which contribute to a more efficient – and profitable – operation.

Sound too good to be true? Brace yourselves. It’s not. Here are three ways that AI-powered technology can help.

1. Moving onboarding and training closer to the point of work

Imagine if we could train and develop someone in the context of doing their work, leading to increased engagement and allowing organizations to retain top talent. Furthermore, we could see an increase in productivity as they constantly evolve their learnings.

AI is allowing companies to understand a worker’s skillset and provides the ability for personalized digital work instructions to guide them in the context of work while they are doing their job, whether it’s a new worker or one with dozens of years of experience. With an AI-based onboarding approach, organizations are able to hire a wider range of individuals with varying skill sets and get those individuals productive faster.

2. Give support at the moment of need

Are you a people watcher? We are. Ever take notice of who is on the factory floor? Last time I checked, we got the “newbies” and “veterans”. The variability of the workforce, both skilled and young, proves that there’s not a one size fits all approach to troubleshooting and performance support.

Enter AI.

Give workers the support and guidance they need, at the moment of need, whether it’s immediate access to a digital troubleshooting guide, or connecting virtually with a subject matter expert.  Delivering personalized work procedures for every worker allows for continuous learning and growth.

3. Improve engagement and retention

Workers that are connected and empowered with digital technology can discover and nurture diverse skills based on their unique competencies and experience. They can earn greater responsibility and independence. This increases confidence and job satisfaction. Which in turn can improve employee retention and slow the revolving door of continual recruiting and training. 

The aftermath?

Workers are likely to stay and want to grow in the company when they feel included. Shortly, workers begin walking with poise and a “can-do” attitude to their next job task.

 

What else is possible with AI-powered connected worker technology?

AI-based technology is ideal for training workers in this variable environment. AI-based systems individualize information about workers based on previous training and data-driven performance insights and augments their capabilities. It offers step-by-step guidance at the moment of need for regularly scheduled maintenance as well as troubleshooting. It helps managers learn about workers’ existing skills and build a rationale for specific roles, resources, and certification support and then make clear recommendations based on demands.

Technology should fit into your business as simply as sliding that last puzzle piece into place. Workers are the heart of your business, and you should adapt technology to fit your business, not the other way around.

Technology should fit into your business as simply as sliding that last puzzle piece into place. That includes how you train your workers. But no two workers are exactly alike. Each will learn and approach problems differently. So why not use the technology that recognizes and adapts to those differences to your advantage?

 

To learn more about how Augmentir can help you embrace this opportunity, contact us for a personalized demo.