Posts

AI is playing a key role in changing the manufacturing landscape, augmenting workers and empowering them with improved, optimized processes, better data, and personalized instruction.

Deloitte recently published an article with the Wall Street Journal covering how AI revolutionizes how humans work and its transformative impact. They emphasized that AI is not merely a resource or tool, but, that it serves almost as a co-worker, enhancing work processes and efficiency. This article discussed how the evolving form of intelligence augments human thinking and emphasized this as a catalyst for accelerated innovation.

Manufacturing is uniquely situated to benefit from AI to improve operations and empower their frontline workforces. The skilled labor gap has reached critical levels, and the market is under tremendous stress to keep up with growing consumer demand while staying compliant with quality and safety standards. Manufacturing workers are crucial to the success of operations – maintenance, quality control and assurance, and more – manufacturers rely upon their workforce to ensure production proceeds smoothly and successfully.

AI is playing a key role in changing the manufacturing landscape, augmenting workers and empowering them with improved, optimized processes, better data for informed decision-making, troubleshooting, personalized instructions and training, and improved quality assurance and control. According to the World Economic Forum, an estimated 87% of manufacturing companies have accelerated their digitalization over the past year, the IDC states 40% of digital transformations will be supported by AI, and a recent study from LNS Research found that 52% of industrial transformation (IX) leaders are deploying connected worker applications to help their frontline workforces. Not only that, AI technology is expected to create nearly 12 million more jobs in the manufacturing industry.

Integrating AI into manufacturing not only enhances productivity, but also opens the door to new possibilities for worker safety, training, and innovative new manufacturing practices. Here are some ways AI is transforming manufacturing operations:

  • AI-based Workforce Analytics: Collecting, analyzing, and using frontline worker data to assess individual and team performance, optimize upskilling and reskilling opportunities, increase engagement, reduce burnout, and boost productivity.
  • Personalized Training in the Flow of Work: With AI and connected worker solutions, manufacturers can identify and supply training at the time of need that is personalized to each individual and the task at hand.
  • Personalized Work Instructions: AI enables manufacturers to offer customized digital work instructions mapped to their skill levels and intelligently assign work based on each individual’s capabilities.
  • Digital Performance Support and Troubleshooting Guide: Generative AI and bot-based AI virtual assistants offer support and guidance to manufacturing operators, enabling access to collaborative technologies and knowledge bases to ensure the correct actions and processes are taken.
  • Optimize Maintenance Programs: AI algorithms analyze data from sensors on machinery and other connected solutions to predict when equipment is likely to fail. This enables proactive maintenance, minimizing downtime and reducing maintenance costs. Additionally, with AI technologies, manufacturers can implement autonomous maintenance processes through a combination of digital work instructions and real-time collaboration tools. This allows operators to independently complete maintenance tasks at peak performance.
  • Improve Quality Control: AI-powered solutions can improve inspection accuracy and optimize quality control and assurance processes to identify defects faster. With connected worker solutions, manufacturers can effectively turn their frontline workforce into human sensors supplying quality data and enhancing assurance processes.
  • Ensure Worker Safety: AI-driven safety systems coupled with connected worker technologies monitor the work environment, supplying real-time data and identifying potential hazards to ensure a safer workplace for employees.

connected enterprise

As AI continues to advance, the manufacturing industry is poised for even greater transformation, improving both the quality of products and the working conditions for employees. AI is revolutionizing the way the manufacturing industry approaches nearly every process across operations, augmenting work interactions, productivity, efficiency, and boosting innovation.

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Manually managing and tracking production in manufacturing has become a thing of the past. That’s because manufacturers are adopting a new digital approach: paperless manufacturing.

Paperless manufacturing uses software to manage shop floor execution, digitize work instructions, execute workflows, automate record-keeping and scheduling, and communicate with shop floor employees. More recently, this approach also digitizes skills tracking and performance assessments for shop floor workers to help optimize workforce onboarding, training, and ongoing management. This technology is made up of cloud-based software, mobile and wearable technology, artificial intelligence, machine learning algorithms, and advanced analytics.

Paperless manufacturing software uses interactive screens, dashboards, data collection, sensors, and reporting filters to show real-time insights into your factory operations. If you want to learn more about paperless manufacturing processes, explore this guide to learn about the following:

What is a paperless factory?

A paperless factory uses AI-powered software to manage production, keep track of records, and optimize jobs being executed on the shop floor. Paperless manufacturing is intended to replace written record-keeping as well as paper-based work instructions, checklists, and SOPs, and keep track of records digitally.

For example, in most manufacturing operations, everything from quality inspections to operator rounds and planned and autonomous maintenance is done on a regular basis to make sure factory equipment is operating properly and quality and safety standards are met. In most manufacturing plants, these activities are done manually with paper-based instructions, checklists, or forms.

Operators and shop floor workers in paperless factories use software to execute work procedures and see production tasks in ordered sequences, which enables them to implement tasks accordingly. Workers are able to view operating procedures, or digital work instructions, using mobile devices (wearables, tablets, etc.) in real-time.

benefits of digital work instructions

Furthermore, paperless manufacturing incorporates the digitization of shop floor training, skills tracking, certifications, and assessments.  This digital approach uses skills management software helps optimize HR-based processes that were previously managed via paper or spreadsheets, and includes the ability to:

  • Create, track, and manage employee skills
  • Instantly visualize the skills gaps in your team
  • Schedule or assign jobs based on worker skill level and proficiency
  • Close skill gaps with continuous learning
  • Make data-driven drive operational decisions

digital skills management in a paperless factory

What are the benefits of going paperless in manufacturing?

There are a number of reasons for factories to go paperless, from cost-effectiveness to increased productivity and sustainability. A paperless system can revolutionize production processes, workforce management, and business operations.

Here are the top benefits of going paperless:

  1. Accelerate employee onboarding: By digitizing onboarding and moving training into the flow of work, manufacturers can reduce new hire onboarding time by 82%.
  2. Increase productivity: Digitizing manufacturing operations means no more manual, paper-based data collection or record-keeping. Workers have more time to run their equipment, execute shop floor tasks, and find solutions to problems.
  3. Boost data accuracy: People are prone to making mistakes, but digital data capture and validation can help offset human error and improve accuracy.
  4. Improved workforce management: Digital skills tracking and AI-based workforce analytics can help optimize production operations and maximize worker output.
  5. Manage real-time operations: Human-machine interface systems eliminate the need for paper, files, and job tickets. This means that workers can analyze inventory and other data in real-time.
  6. Save money: Although going paperless means that the cost of paper is eliminated, the savings extend beyond that. With greater productivity, operations in real-time, and improved production optimization, costs can be reduced in many areas.

How do you go paperless in manufacturing?

Going paperless starts with digitizing activities across the factory floor to increase productivity, and extending that value through a digital connection between the shop floor and enterprise manufacturing systems. We lay out below the four basic steps for how to go paperless in manufacturing:

Step 1: Digitize and connect your frontline operations.

Paperless manufacturing starts with the use of modern, digital tools that can connect, digitize, and optimize what your employees know and how they are doing on the job. Solutions that incorporate enhanced mobile capabilities and combine training and skills tracking with connected worker technology and on-the-job digital guidance can deliver significant additional value. A key requirement to start is to identify high-value use cases that can benefit from digitization, such as quality control or inspection procedures, lockout tagout procedures, safety reporting, or autonomous maintenance procedures.

Step 2: Augment your workers with AI and Connected Worker technology.

AI-based connected worker solutions can help both digitize work instructions and deliver that guidance in a way that is personalized to the individual worker and their performance. AI Bots that leverage generative AI and GPT-like AI models can assist workers with language translation, feedback, on-demand answers, access to knowledge through natural language, and provide a comprehensive digital performance support tool.

As workers become more connected, companies have access to a rich source of job activity, execution, and tribal data, and with proper AI tools can gain insights into areas where the largest improvement opportunities exist.

Pro Tip

Frontline operations software like Augmentir’s Connected Worker Solution helps you digitize and optimize the operations of your facility. Digitally manage safety, quality, operations, and maintenance procedures, skill requirements, training, and KPIs all through a visual interface. Connected worker solutions help digitally integrate your shop floor operations.

A

Step 3: Set up IoT sensors for machine health monitoring.

The industrial Internet of Things (IoT) uses sensors to boost manufacturing processes. IoT sensors are connected through the web using wireless or 4G/5G networks to transmit data right from the shop floor. The use of machine health monitoring tools along with connected worker technology can provide a comprehensive shop floor solution.

Step 4: Connect your frontline to your enterprise.

Digitally connected frontline operations solutions not only enable industrial companies to digitize work instructions, checklists, and SOPs, but also allow them to create digital workflows and integrations that fully incorporate the frontline workers into the digital thread of their business.

The digital thread represents a connected data flow across a manufacturing enterprise – including people, systems, and machines. By incorporating the activities and data from these previously disconnected workers, business processes are accelerated, and this new source of data provides newfound opportunities for innovation and improvement.

 

Augmentir provides a unique Connected Worker solution that uses AI to help manufacturing companies intelligently onboard, train, guide, and support frontline workers so each worker can contribute at their individual best, helping achieve production goals in today’s era of workforce disruption.

Our solution is a SaaS-based suite of software tools that helps customers digitize and optimize all frontline processes including Autonomous and Preventive Maintenance, Quality, Safety, and Assembly.

paperless factory

 

Transform how your company runs its frontline operations. Request a live demo today!

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

Efforts to digitally enable the frontline industrial workforce have become increasingly common over the past several years. Research from LNS shows that over half of industrial organizations globally have undertaken Connected Frontline Workforce (CFW) initiatives. CFW has become a strategic part of Industrial Transformation (IX) initiatives as manufacturers seek to solve critical labor shortages, skills gaps, and retention issues in frontline operations.

CFW-enabling technologies hold the promise of helping companies meet their frontline workforce challenges while optimizing operational performance across safety, quality, and productivity dimensions. However, industrial business and technology leaders must navigate the uncertain waters of the relatively immature and highly fragmented CFW Applications market to capture the opportunity fully.

LNS Research Connected Worker Solution Selection Matrix

From their extensive analysis, LNS Research has created the CFW Applications Solution Selection Matrix™ (SSM) – a comprehensive guide intended to help man­ufacturers better understand, evaluate, and even select from a shortlist of CFW technology vendors.

LNS reviewed dozens of vendors within the CFW ecosystem and categorized them based on various key criteria, including product capabilities, market potential, and company presence.  Augmentir was named by LNS as a leading CFW solution innovator.

Augmentir positioned as a leading front runner and innovator

According to LNS Research, Augmentir is well-positioned for future growth, with a trajectory that gives it the potential to be among a small set of likely market leaders in the CFW Applications space. This assessment is based partly on the strength of differentiated capabilities of its AI-enabled solution suite to enable proactive, data-driven performance improvement, personalization of work execution support and training, and the integration of individual and team skills and qualifications to guide workforce development and shift-specific work assignment.

Other key factors impacting Augmentir’s potential are the strength and proven experience of the leadership and management teams, strong momentum in the market, a record of successful product innovation, ecosystem partnerships, and likely continued access
to adequate funding and resources to support the expansion of go-to-market initiatives. Augmentir’s track record indicates a strong likelihood of continued growth and the potential over time to be among a select group of market leaders in
the CFW Applications space.

Read the full report here.

Augmentir’s results from the field

Manufacturers are using connected frontline worker solutions to empower their employees with real-time, actionable data; driving better decision-making and improving safety, training, and more.

Leading manufacturers that deployed Augmentir’s AI-driven, smart, connected worker solution have seen impressive results, such as:

  • 75% reduction in new hire training/onboarding time
  • 27% reduction in machine downtime using Autonomous Maintenance
  • 32% improvement in worker productivity

In addition to the above results, our customers have seen quality, safety, and productivity increases across all operations, as well as increases in employee retention and reductions in operating costs associated with employee churn.

 

If you are interested in learning why LNS Research ranked Augmentir as the leading connected worker solution in the market, reach out to us and request a live demo.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

 

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

Following quality control (QC) and quality assurance procedures in the food industry is imperative to ensure product quality and consumer satisfaction. Today’s consumers demand safe, reliable goods that meet all quality inspection protocols. The last thing you want is for a product to get recalled because of potential health concerns.

Food producers know the importance of QC and assurance more than most industries. Manufacturers who perform routine inspection of products during each stage of the production process significantly increase their chances of delivering items that are free of health hazards and liabilities. But beyond avoiding these concerns, standardizing and digitizing quality procedures benefits the entire operation.

Ultimately, preventing and catching quality issues can boost product quality, reduce waste, raise profits, increase brand reputation, and avoid media or food safety disasters. Learn more about QC and assurance in the food industry and how to improve it as we discuss:

quality control food industry

Types of quality control measures to take

There are certain QC measures you can take to ensure that all goods meet quality standards, from regular machine inspections to worker training. They fall into two general categories: preventative and reactive.

Preventative (proactive) quality control: Minimizing the number of deficiencies begins with implementing preventative QC solutions. When workers can catch mistakes before they even happen, they prevent product defects. Preventative QC measures should be practiced on a routine basis and can range from inspecting machines and equipment to offering employee training opportunities. By providing workers with real-time information and guidance through mobile, connected worker solutions, manufacturers enable them to make better decisions about product quality, reducing the risk of errors and identifying potential quality issues before products are shipped to customers, reducing the risk of product recalls, and preserving consumer trust.

Reactive quality control: Catching every defect on the production floor is nearly impossible, even if the most fool-proof strategies are taken. That’s why creating a plan of action ahead of a crisis can help solve quality issues as they happen.

What to put in your plan will depend on the potential problems. For example, you can include specific instructions on what to do if machinery breaks down or stops unexpectedly. It’s vital to collect any data at this stage. Analyzing this data can help you improve preventative quality control in the future to make sure the same problems don’t happen again.

Pro Tip

By utilizing AI and modern, digital technologies, companies can connect, engage, and empower frontline workers to drive quality improvements, resolve quality issues faster, and share timely insights with teams across the value chain.

A

Keep in mind that practicing quality control in the food industry should be part of every manufacturing process, from product ideation and development to production and delivery. Problems can develop at any time, so it’s crucial to follow protocols at every stage of production to prevent even the slightest of mistakes.

All workers should also uphold QC and assurance protocols in their everyday tasks to ensure continuous product improvement.

Better organization of equipment can also help workers understand how the action of one affects the other to solve any potential problems. This is another benefit of integrating your asset hierarchy with a connected worker solution. In a nutshell, strong hierarchies are a solid foundation for proper maintenance management and reliability.

How to improve QC and assurance procedures in food production

Effective quality control and assurance procedures prevent defective food products from making their way into grocery stores and homes. That’s why manufacturers should document the quality of their goods at every stage of the operational process. Strategies like first time quality (FTQ), or first time right, plans coupled with smart, connected solutions help decrease product deficiencies and increase customer satisfaction.

Manufacturing firms in the food industry must follow specific requirements set by the Food and Drug Administration (FDA), Good Manufacturing Practices (GMP) system, and the Hazard Analysis and Critical Control Points (HACCP). The guidelines set by these regulatory bodies can give businesses a better idea of how their processes should look and what data they need to collect and report.

Data should be collected for real-time production processes. These vary by product but may range from product chilling and thermal processing to testing raw materials for metal toxins and other chemical deposits.

The following steps provide a roadmap for how to improve quality control in the food industry.

Step 1: Source the correct ingredients

A successful assembly line run begins with finding and using the correct ingredients. Some things to think about when deciding which ingredients to choose: where the raw material was sourced, when, and its condition.

Step 2: Include an approved supplier list

Make sure that each ingredient has an approved supplier list. A good rule of thumb is to include three vendors per ingredient and record the ingredient with each supplier’s name, address, and code number on the list. The more information you include, the better. Having an approved vendor list ensures that all parties are properly vetted by the manufacturing firm and meet its requirements for quality and distribution.

Step 3: Document product and recipe creation

Documenting how each food item is made and its recipe helps set the quality standards for finished goods. This documentation can also be useful when improving product development in the future. Your document should include the types of ingredients used, their codes, batch yield, percentage formula, and more.

Step 4: Catalog production procedures

It’s also critical to log all the details of a production process, including how materials should be delivered, the appropriate conditions for storing food, what order each ingredient should be added to the batch, what tools are needed, and who is in charge of each task.

Note that this step is different from documenting product and recipe development because it includes the actual instructions for carrying out each procedure. For example, a worker may be asked to preheat the oven to a certain temperature as part of ensuring the food is ready for customer distribution.

Step 4: Record real-time processes

Machine operators should record in real-time every detail of how goods are created during actual production. This can include factors like product size, weight, expiration date, equipment conditions, and more.

Step 5: Digitize assurance and inspection processes

AI and smart, connected worker systems help digitize and link inspections and other quality control procedures. This creates an additional layer of defense, protecting customers and preventing quality issues before they can impact production.

How Augmentir helps with quality control and assurance

Augmentir offers a smarter way to improve quality control in the food industry by effectively standardizing and optimizing quality assurance and inspection procedures for all frontline workers. With our smart, connected solutions coupled with AI-powered software, food manufacturers have improved quality control and assurance by:

  • Tracking and analyzing data to identify trends and opportunities for improvements
  • Reducing human error in inspections by standardizing and improving training procedures and processes
  • Transforming connected workers into human sensors who can proactively address quality and safety events that surface during manufacturing operations

standardize and digitize quality assurance procedures

 

Our AI-powered connected worker solutions, provide digital work instructions to help employees better perform inspection checks and reduce the number of production errors and rework.

These customized solutions also include:

  • Digital standard operating procedures (SOPs) for how to complete assembly line tasks. These step-by-step instructions can greatly improve workflow efficiency, increase regulatory compliance, and reduce mistakes on the shop floor.
  • Digital workflows that convert your paper-based processes to digital work instructions and personalize them to the needs of each worker.
  • Enhanced product traceability to decrease equipment setup time, reduce process inconsistencies, and better meet customer expectations. Our digital instructions help you to easily track materials from the supply chain, inventory, and across every production process.

If you are interested in learning why companies are choosing Augmentir to help improve their quality control and assurance processes, check out our quality use cases – or reach out to schedule a live demo.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

 

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

In today’s always-changing industrial landscape, organizations are acutely aware that adopting innovative technologies and processes is not just a “nice-to-have” but a “must” to stay competitive. According to PwC, 75% of manufacturers believe that Connected Enterprise technologies will have a major impact on their business over the next five years. By 2025, the number of connected devices in industrial settings is expected to reach 21.5 billion, making it clear that the adoption of connected technologies is a critical step for any organization that wants to succeed in the future.

connected enterprise

However, there is one aspect of a truly connected enterprise that many manufacturers overlook – their frontline workforce.

Frontline workers play a critical role in ensuring the safety, quality, and uptime of production operations, yet too often these workers are disconnected from the rest of the business. Connected frontline worker (CFW), refers to the use of technology to connect workers with the digital systems and processes in their organization, making it easier for them to collaborate, access information, and perform their jobs more efficiently. To fully realize the benefits of a connected workforce, it is essential to understand how they fit into the larger Connected Enterprise concept.

Learn more about what a connected enterprise is and the role that connected worker solutions play in the following sections:

What is a connected enterprise?

Connected Enterprise refers to the integration of digital technologies, data, and analytics across an organization’s entire operational landscape to improve efficiency, productivity, and profitability. Companies are rapidly adopting advanced technologies to improve their business operations. This concept spans several initiatives within an organization: assets and equipment, the products being manufactured, the end customer, operations, workers, and the entire supply chain.

connected enterprise - LNS Research

Source: LNS Research

Connected worker (or connected frontline worker – CFW) technology is a crucial part of this concept – as it connects the human workforce with the digital systems and processes in the organization.

How to create a connected enterprise

The first step to creating a connected enterprise is implementing smart, connected worker solutions. AI and connected frontline worker technologies are some of the leading solutions organizations are turning to on their path toward a Connected Enterprise. Augmentir has seen manufacturers achieve significant results after successfully implementing connected frontline worker solutions in conjunction with AI-driven analytics:

  • Up to a 72% reduction in training and onboarding times
  • More than 20% decrease in downtime
  • Nearly a 25% increase in productivity

Solutions that incorporate enhanced mobile capabilities and combine training and skills tracking with connected worker technology and on-the-job digital guidance can deliver significant additional value for an organization’s connected enterprise initiative. Data from actual work performance combined with AI-based analytics can inform workforce development investments, and deliver smart insights that reduce time to productivity, enable targeted reskilling and upskilling, and provide individualized guidance and support at the point of work so that you get the best each person has to offer.

connected worker as part of connected enterprise

However, companies need to be strategic and take a structured approach. It is imperative that the right solutions are identified and tested by the right divisions, personnel, and business units.

LNS Research has developed an “Industrial Transformation Reference Architecture” approach that provides a framework and simplifies implementation into four layers:

  1. Business Processes and Systems
  2. Connected Assets and Operations
  3. Data and Analytics
  4. Connected Worker

These guidelines give organizations reference points to help guide them along their path of industrial transformation and set them up for success in connecting their operations.

Key benefits of connecting your workforce to your enterprise

By leveraging AI and other smart technologies, companies are providing workers with real-time guidance and assistance, enabling them to perform their jobs more effectively. Frontline workers can access information, collaborate with colleagues, and receive real-time alerts on potential hazards, all of which help to improve their productivity and safety.

The benefits offered by AI and connected technologies are significant:

  • Improved efficiency: By automating routine tasks and providing real-time information, AI and connected worker technologies can help streamline operations and reduce errors.
  • Increased productivity: AI and connected worker technologies can help workers perform their jobs more effectively, enabling them to produce more goods in less time.
  • Better quality control: By providing real-time data on production processes and product quality, AI and connected worker technologies can help identify issues early and prevent defects.
  • Enhanced safety: Connected worker technologies can provide workers with real-time guidance and assistance, enabling them to perform their jobs more safely and avoid accidents.
  • Cost savings: By reducing downtime, improving efficiency, and enhancing product quality, connected worker technologies can help companies save money and increase profitability.
  • Improved decision-making: By providing real-time insights and data analytics, connected worker technologies can help companies make more informed decisions about their operations and identify new opportunities for growth.

According to McKinsey & Company, by 2030, the adoption of “Connected Enterprise” technologies is expected to generate $1-2 trillion in value for the global economy, including the manufacturing industry. As the transformation from paper processes to digital continues, industrial organizations are consistently finding that CFW solutions are an essential component of a larger “Connected Enterprise”. By leveraging AI and other advanced technologies to better analyze data and provide actionable insights, companies empower workers with the tools to perform their jobs more effectively, improving productivity, efficiency, and safety. Adopting AI and connected worker technologies is a key part of industrial transformation and of “Connected Enterprise” initiatives, offering industrial organizations an enhanced competitive advantage and solutions to many of the obstacles they face in today’s markets.

Implementing a connected enterprise with Augmentir

If you are interested in learning for yourself why companies are choosing Augmentir to help them connect, digitize, and optimize their frontline operations – reach out to book a demo.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

 

AI-powered technology may be the missing puzzle piece for today’s workforce crisis.

Are you still printing work instructions and operating manuals? If so, we need to have a serious chat! Maybe you invested in “going digital” a while back and think your work is done. You’re not alone. It was considered “groundbreaking” when PDF files made their way to the factory floor. 

The first generation of digital work instructions were birthed after learning 46 percent of field technicians claimed paperwork and administrative tasks were the worst part of their day-to-day job. No argument here. Completing and filing paperwork is time-consuming and there is potential for lost information. There was an obvious upside to going digital, except for no longer being able to tell your supervisor that your dog ate your worker performance report. 

But even now that technology is ready for the archives. An estimated $1.3 trillion (and counting!) has been spent on digital transformation initiatives as the online connected workplace and market continue to move at a rapid pace. 

We are no fortune tellers, but studies show that 25 to 31 percent of 3.3. million business service jobs will be automated in the next decade. This doesn’t mean everyone is being replaced by robots. On the contrary. It means technology is improving to help workers do their jobs even better. Manufacturing companies need to be prepared to hop on this next-generation train if they aren’t already.

Move over one-size-fits-all training and work instructions 

The individualized, real-time, connected worker platform is here. Let us emphasize individualized. Connected worker platforms are being implemented in myriad industries, from automotive to food processing. Any industry which is adapting daily to the constant shifts and pressures of the global economy. Regardless of the industry, standard digital work instructions are no longer effective. They do not reflect the real-time changes happening in the operation, such as order fulfilment and materials inventory, or equipment maintenance needs and the capabilities of the workers operating the machines. Imagine working on the manufacturing floor for five years and handed with the same standardized work instructions as the new hire.

Does this make sense? Not anymore. Not when AI-based technology is changing what’s possible. And what’s different about this latest wave of technology that makes it so special? It’s built around optimizing the performance of people (Gasp.)

Change is inevitable. Growth is optional. – John C. Maxwell

A marriage made in heaven–the next generation of workers is ready for a digitally connected workplace

Recruiting and retaining talented workers is one of the greatest challenges facing operations today. We get it. But there’s good news. As one generation of workers readies for retirement, another is stepping up to fill the gap. Gen Z is overflowing with talented innovators in the tech world having grown up surrounded by non-stop advancements and devices. Need one of them to look somebody up in the phone book? Forget it. But need assistance when your home computer suddenly “dies”? These are your people. 

It’s more than video games. Their education has been largely based on a digital foundation. Nearly every function of their daily lives has an element of connectivity to the broader online world. You could say this generation is hardwired to respond best to customized digital learning platforms. It’s their love language. And so the potential to drastically improve productivity is real.

The beauty of the digitally connected worker–could they be “the One”?

The digitally connected worker has all the right stuff for a long-lasting relationship with your operation. The digital training and work instruction platform holds their unique inventory of skills, goals, and performance history, and works with them to become a better version of themselves on the floor. Workers whose individual needs are supported are better, more engaged employees. They have the self-confidence – as well as the tools and specific instructions – to address problems head on when they arise. An investment in AI-powered technology is an investment in a stable, adaptable, and reliable workforce.

Are you and your workforce ready to take this next step in digitization? Contact Augmentir to start the conversation. Together let’s step into the full potential that this generation has to offer to improve your operational efficiency.

Recently, Augmentir completed a rigorous qualification audit as part of a Tier 1 Pharmaceutical Manufacturing company’s Good Manufacturing Practice (GMP), and we are pleased to announce that our product successfully passed the audit.

Recently, Augmentir completed a rigorous vendor qualification audit as part of a Tier 1 Pharmaceutical Manufacturing company’s Good Manufacturing Practice (GMP), and we are pleased to announce that our product successfully passed the audit.

According to the International Society for Pharmaceutical Engineering, GMP regulations require that pharmaceutical manufacturers adequately control manufacturing operations, and establish a quality approach to manufacturing, enabling companies to minimize or eliminate instances of contamination, mixups, and errors. The use of Augmentir’s connected worker software is a critical component for manufacturing within the pharmaceutical and life sciences environment as it helps to reduce errors and ensures compliance with these regulations.

This qualification audit, performed by our client’s Lead Auditor and the Senior QA Validation Specialist, assessed the adequacy and effectiveness for adherence and compliance to regulatory requirements. The quality and effectiveness and compliance to the site’s Quality Management System (QMS), policies, and procedures were also assessed and ultimately, Augmentir was approved to be an Enterprise IT System/Infrastructure Provider. 

Audits like these are challenging for any company and can present even greater challenges for small companies like Augmentir. Yet, it is extremely important as GMP regulations ensure a quality approach to manufacturing, helping companies minimize errors, mistakes, and instances of contamination.  

At Augmentir, we have successfully completed multiple audits to date and are excited to add this Pharmaceutical GMP Audit to that list as we continue in the steps of our legacy products. These audits aren’t new to our team, and this recent milestone is a continuation of our history in bringing innovative, high-quality software into the manufacturing sector, having delivered on more than an estimated 100,000 audited processes throughout the history of software products our team has been involved in.

As we kick off 2022, this Pharmaceutical GMP Audit completion stands as a testament to Augmentir, our team, and our commitment to maintaining the highest global quality standards and validates our success in the pharmaceutical industry. 

Here’s to our next successful audit!

 

These virtual events were a great way to connect with manufacturing professionals and discuss some of the industry’s top challenges and topics – workforce transformation, learning and development, lean manufacturing, and autonomous maintenance.

Last week, Augmentir participated as a sponsor in the 2021 American Food Manufacturing Summit. This 3-day virtual event was designed to bring food and beverage manufacturers together to discuss current trends, strategic insights, and best practices in an ever-evolving environment. The event focused on addressing today’s top challenges and future of food processing and manufacturing, specifically around embracing digital transformation and technology for manufacturing excellence. Attendees were able to connect with top industry influencers and learn about different strategies to improve automation, operational excellence, quality, and safety in the food manufacturing industry through open roundtables and 1:1 meetings.

Augmentir’s Enablement Director, Shannon Bennett, hosted an open roundtable discussion on the role digital transformation plays in food and beverage manufacturing, and how technologies like artificial intelligence (AI) and connected worker platforms are helping companies kick-start their digital transformation efforts. During the discussion, Shannon opened the floor to the attendees to discuss the day-to-day challenges they face at their manufacturing organizations and the tools they’re looking into to solve those challenges. 

Solving Manufacturing’s Biggest Challenges with AI and Connected Worker Technology

The roundtable consisted of executives and manufacturing leaders from some of the world’s largest food and beverage companies to smaller family-owned and operated specialty food and beverage manufacturers. Throughout the roundtable, we heard the same challenges and frustrations related to standardization, moving from paper to digital processes, data collection, lack of traceability, and an overall need for digital transformation.

The overarching roundtable discussion was around digital transformation. Food and beverage manufacturers are accelerating the pace of digitization to address their top challenges – the labor crisis, increasing skills gap, and increased pressure for improved production efficiency, changes in consumer demands, and increased regulatory compliance related to food safety.

Moving from Paper to Digital

During our roundtable discussion, most of the manufacturing leaders were in the discovery phase of their modernizing process, where they were beginning to look into digital solutions to solve their challenges around manual processes and efforts to reduce paper. Some of the discussion around paper included issues with quality on the shop floor and wanting to go paperless, easier access to training for employees, lack of traceability (for example, maintenance schedules need more visibility of completion, where issues arise, and more transparency all around), and digitizing information from a quality standpoint.

Digital work instructions reduce the need for paper and deliver information to frontline workers when and where they need it. This provides frontline workers with a standardized way of performing technical work.

Lack of Data-Driven Insights into the Work Being Done

Another key challenge was the lack of insight into how workers were performing their jobs – whether it be in quality, equipment operation, or maintenance. One participant discussed labor challenges in their organization and that when they collect data it often gets lost and when they come back to it, they don’t know or remember why they’ve collected it in the first place.

Connecting workers with digital tools is merely a first step in the process of truly understanding and getting clarity on the work being done. Connected Worker data is inherently noisy, generating misleading signals that traditional business intelligence (BI) tools aren’t designed to handle. This leads to murky or contradictory conclusions that prevent organizations from taking anything but a “one size fits all” approach to work process and workforce investments. Or, even worse, false conclusions are generated about the state of work process and workforce opportunities, leading to targeted investments into the wrong areas.

The discussion shifted to AI as a solution not only bringing clarity to the work being done, but also more generally democratization of the workplace, and giving employees the tools to use data effectively to improve manufacturing operations. AI is designed for purpose to recognize patterns in the noisy data sets generated by a factory workforce, letting your continuous improvement and operations teams focus on what’s really going on.

Training

Employee onboarding and training was also a hot topic of discussion. Many participants spoke about manual processes and how traditional training methods are proving to be ineffective.  Traditionally, there was a clear separation between training and work execution. However, many participants shared that they are starting to re-think how they are training and onboarding their workers, and shifting more towards delivering training at the moment of need. The roundtable participants discussed at length approaches and strategies for re-thinking how training is delivered for today’s workforce.

Build a Modern, Connected Workforce with AI

To address these challenges, the roundtable participants overwhelmingly agreed that the starting point should be digital transformation initiatives that focus on streamlining data collection and digitizing valuable data. Using an AI-powered connected worker platform to accelerate this effort not only furthers a company’s digital transformation efforts, but also provides a whole new set of data that can provide really interesting insights and optimization opportunities. AI doesn’t remove the human worker from the equation, but rather, takes the human worker and embeds them into the digital operation.

 

To learn more about how AI is being used to digitize and modernize manufacturing operations, check out our latest eBook – Build a Modern, Connected Workforce with AI.