Posts

Learn how manufacturers combat the manufacturing skilled labor shortage and close skills gaps with an Augmented Connected Workforce (ACWF).

An Augmented Connected Workforce (ACWF) offers manufacturing and other industrial organizations a powerful solution to combat the ever-worsening skilled labor shortage and skills gap. According to a report by Deloitte and the Manufacturing Institute, an estimated 2.1 million manufacturing jobs could go unfilled by 2030 and the cost of those missing jobs could potentially total $1 trillion in 2030 alone.

augmented connected workforce acwf manufacturing

By integrating advanced technologies like artificial intelligence (AI), connected worker platforms, and other emerging solutions manufacturers can enhance the capabilities of their existing workforce and bridge skill gaps. Connected worker tools offer real-time monitoring of your frontline workforce, ensuring seamless operations. Moreover, connectivity enables remote collaboration, allowing experts to assist frontline workers from anywhere in the world. This interconnected ecosystem empowers workers with the tools they need to succeed and attracts new talent by showcasing a commitment to innovation and technology-driven growth.

Through an ACWF, manufacturers can effectively combat the manufacturing skilled labor shortage and close the skills gap while driving productivity, innovation, and remaining competitive. Read more about ACWF in manufacturing below:

Implementing an ACWF in Manufacturing

A critical element of transitioning from a traditional workforce to an Augmented Connected Workforce (ACWF) is implementing and adopting new technologies and processes. Here are a few steps that can help with the adoption of ACWF technologies and smooth transitions in industrial settings:

  • Step 1: Assess Current Processes – Organizations must understand existing workflows and identify areas where AI, connected worker platforms, and other ACWF technology can replace paper-based and manual processes to enhance efficiency and productivity.
  • Step 2: Invest in Technology – Procure  AI-driven analytics platforms, mobile technology, and wearable technology to enable real-time data collection and remote collaboration.
  • Step 3: Training and Onboarding – Provide comprehensive training programs to familiarize workers with new technologies and workflows. Emphasize the importance of safety protocols and data privacy.
  • Step 4: Pilot Programs – Start with small-scale pilot programs to test the effectiveness of the implemented technologies in real-world manufacturing environments. Target high-value use cases that can benefit from a transition from paper to digital.
  • Step 5: Continuous Improvement – Gather feedback from workers and supervisors during pilot programs and adapt implementation initiatives based on their input. Continuously optimize processes and technologies for maximum effectiveness.

By following these steps, manufacturers can smooth the transition from a traditional manufacturing workforce to an ACWF, empowering their frontline workers with improved capabilities, skills, and overall operational excellence.

Supporting Learning in the Flow of Work

Augmented Connected Workforce (ACWF) technologies allow for increased frontline support and for new processes around learning and training to strategically upskill and reskill, reduce time to competency for new workers, and to combat the skilled labor shortage in manufacturing and more. Connected worker tools, such as wearable devices and IoT sensors, enable real-time monitoring of worker performance and environmental conditions, ensuring safety and efficiency on the factory floor.

pyramid of learning

An ACWF also allows for improved workflow learning capabilities giving frontline workers access to expert guidance, remote assistance and collaboration, microlearning, and other learning in the flow of work options regardless of the worker’s location.

ACWF tools further enhance frontline activities through:

  • Digital work instructions and guidance: Smart, connected worker platforms provide digital work instructions, procedures, and visual guidance easily accessible to workers on mobile devices.
  • Digital mentors and training: Some ACWFs incorporate “digital mentors” – GenAI-powered industrial assistants that can provide step-by-step guidance to workers, especially new hires.
  • Knowledge capture and sharing: Connected frontline worker applications serve as knowledge sharing platforms, capturing data and insights from frontline workers, which can then be analyzed by AI software and used to improve processes, update work instructions, and share knowledge across the organization
  • Performance monitoring and feedback: ACWF solutions provide visibility into worker performance, allowing managers to identify areas where additional training or support is needed.

augmented connected workforce in manufacturing

In summary, ACWF initiatives empower frontline workers with the digital tools, knowledge, and support they need to learn and improve their skills directly within their daily workflows, rather than relying solely on formal training programs. This helps close skills gaps and drive continuous improvement.

Future-proofing Manufacturing Operations with an ACWF

Adopting an Augmented Connected Workforce (ACWF) approach centered around augmenting frontline workers with mobile technology, immersive training, collaborative decision-making, and continuous improvement, allows manufacturers to future-proof their operations and gain a sustainable competitive advantage. This concept empowers employees with powerful tools that augment and enhance their capabilities, productivity, and overall business processes by accessing critical information and fostering collaboration

AI-powered software can analyze vast amounts of data to optimize production processes and predict workforce development needs. At the same time, connected frontline worker solutions enable the integration of mobile and wearable technologies and provide real-time data insights, aiding in optimizing factory operations and adapting to evolving industry trends.

For an Augmented Connected Workforce, integrating AI and connected worker technologies serves as a vital strategy for manufacturers navigating the skilled labor crisis. Augmentir encourages organizations to embrace ACWF transformations and expedites adoption through a comprehensive connected worker platform leveraging the combined benefits of connected worker and AI technologies.

With Augmentir, frontline workers can access critical information, real-time data and insights, and expert advice and guidance all in the flow of work preventing lost time and improving both efficiency and productivity. Schedule a live demo to learn more about how an Augmented Connected Workforce future-proofs manufacturing operations and enhances frontline activities.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Discover key strategies to boost production efficiency in manufacturing—maximize output, cut waste, and improve operations with smart, practical solutions.

In today’s competitive industrial landscape, production efficiency in manufacturing is a critical factor that directly impacts profitability, customer satisfaction, and long-term business success. To achieve production efficiency, the actual output must match the optimal standard output, which involves minimizing waste, reducing downtime, optimizing labor, and ensuring consistent quality at every step of the manufacturing process.

production efficiency in manufacturing

Introduction to Production Efficiency

Production efficiency refers to the ability of a manufacturing process to produce the maximum output with the given resources, while minimizing waste and reducing costs. It is a key concept in economics and operational analysis, essential for businesses to remain competitive in the market. Achieving production efficiency involves optimizing processes, reducing waste, and improving productivity to achieve higher profitability and competitiveness. By focusing on improving production efficiency, manufacturers can increase their production capacity, reduce costs, and enhance product quality. This, in turn, leads to increased customer satisfaction and loyalty, as high-quality products are delivered consistently and on time.

What is Production Efficiency in Manufacturing?

Production efficiency refers to the ability of a manufacturing operation to produce goods using the least amount of resources—time, materials, and labor—without compromising on quality. An efficient production line runs smoothly, minimizes bottlenecks, and ensures equipment and workforce are fully utilized. To measure production efficiency, metrics such as Overall Equipment Effectiveness (OEE), cycle time, yield rates, and labor productivity are used.

Pro Tip

Using digital tools, AI-powered analytics, and connected worker platforms are revolutionizing how factories operate. These technologies provide visibility into operations, uncover hidden inefficiencies, and support agile decision-making.

A

Why is Production Efficiency Important?

In manufacturing, even small inefficiencies can lead to significant cost overruns, missed deadlines, and quality issues. Improving production efficiency is essential for maximizing output while minimizing input—helping manufacturers stay competitive, agile, and profitable in an ever-evolving market. Manufacturing efficiency, on the other hand, focuses specifically on optimizing the effectiveness of manufacturing processes, workforce deployment, and overall productivity on the shop floor. Efficient production processes enable manufacturers to do more with less, which not only boosts the bottom line but also enhances the overall customer experience.

Here are some of the key benefits:

Lower Operational Costs

By reducing machine downtime, optimizing labor, and minimizing material waste, companies can optimize processes to significantly cut overhead costs and improve profitability.

Reduced Waste and Rework

Quality control ensures that products are made right the first time, decreasing scrap rates and minimizing costly rework caused by defects or human error.

Shorter Lead Times

Streamlined workflows and fewer production delays, coordinated through efficient production schedules, mean faster turnaround times, allowing manufacturers to fulfill orders more quickly and meet tight delivery schedules.

Better Resource Utilization

Whether it’s labor, machinery, or raw materials, efficient production ensures every resource is used to its full potential throughout the entire production cycle—maximizing value and reducing idle time.

Higher Customer Satisfaction

Consistently delivering high-quality products on time builds trust with customers and strengthens relationships, leading to repeat business and positive brand reputation. Manufacturers improve efficiency by leveraging modern technologies and real-time data analytics, which helps streamline processes, reduce downtime, and enhance productivity.

Greater Competitiveness in the Market

Manufacturers that improve efficiency can offer better prices, respond faster to market changes, and innovate more effectively—gaining a clear edge over less agile competitors.

Ultimately, production efficiency is not just about internal gains—it’s a strategic advantage that drives growth, scalability, and long-term success.

Key Strategies to Improve Production Efficiency

Here are some proven strategies to improve production efficiency:

1. Implement Lean Manufacturing Principles to Drive Continuous Improvement

Lean manufacturing methodologies focus on improving efficiency by eliminating waste (or “muda”) from every aspect of the production process. Tools such as 5S Audits, Kaizen, and value stream mapping help identify inefficiencies and areas for continuous improvement.

2. Invest in Autonomous Maintenance and TPM

Encouraging operators to handle basic maintenance tasks—such as Clean, Inspect, Lubricate (CIL)—as part of an Autonomous Maintenance and Total Productive Maintenance (TPM) strategy minimizes equipment downtime, improves machine efficiency, and ensures machines run at peak performance.

3. Leverage Digital Work Instructions and Connected Worker Tools

Modern digital approaches like digitizing standard operating procedures (SOPs) and adopting connected worker tools helps ensure consistency, reduce errors, and make it easier to train workers by providing accurate data.

improve production efficiency in manufacturing with augmentir

In a recent survey conducted by LNS Research, more than 70% of the most profitable manufacturers are currently utilizing in Future of Industrial Work (FOIW) initiatives and connected worker technology, with the vast majority of them seeing meaningful progress and delivered corporate value through these workforce initiatives. Connected Worker platforms like Augmentir enable manufacturers to create AI-powered workflows that guide frontline workers through each task efficiently and accurately.

3. Use Real-Time Data and Analytics to Track Key Performance Indicators

Data-driven decision-making is critical for efficiency. Historical data can provide insights into the maximum output achieved by a facility under full capacity, which can help in defining standard outputs accurately. Real-time monitoring of machine performance, operator productivity, and process quality helps identify issues quickly and supports predictive maintenance strategies.

4. Streamline Workforce Management

Matching the right tasks to the right workers based on skills, experience, and availability reduces errors and idle time for any manufacturing company. Smart workforce tools can track training, performance, and certification to ensure optimal labor allocation.

Critical Components of Production Efficiency

Equipment Efficiency

Equipment efficiency is a critical component of production efficiency, as it directly impacts the overall productivity and effectiveness of the manufacturing process. Equipment efficiency refers to the ability of machinery and equipment to operate at optimal levels, with minimal downtime and maintenance. To achieve equipment efficiency, manufacturers can implement regular maintenance schedules, invest in modern and efficient equipment, and provide training to operators to ensure they are using the equipment correctly. By improving equipment efficiency, manufacturers can reduce waste, minimize downtime, and increase overall production efficiency. This not only enhances the reliability of the production process but also ensures that machinery operates at peak performance, contributing to higher output and better product quality.

Capacity Utilization

Capacity utilization is a key performance indicator (KPI) that measures the extent to which a manufacturing facility is using its available capacity to produce goods. It is calculated by dividing the actual output by the maximum potential output and is expressed as a percentage. Capacity utilization is essential for production efficiency, as it helps manufacturers identify areas of inefficiency and optimize their production processes. By improving capacity utilization, manufacturers can increase their production capacity, reduce costs, and improve product quality. High capacity utilization indicates that a manufacturing facility is effectively using its resources, leading to more efficient operations and better alignment with market demand.

Inventory Management

Inventory management is a critical component of production efficiency, as it directly impacts the availability of raw materials and finished goods. Effective inventory management involves managing the flow of goods, services, and related information from raw materials to end customers. By implementing efficient inventory management systems, manufacturers can reduce waste, minimize stockouts, and improve overall production efficiency. Inventory management involves tracking inventory levels, managing supply chains, and optimizing inventory turnover to ensure that the right products are available at the right time. This not only helps in meeting customer demand promptly but also reduces the costs associated with excess inventory and stockouts, contributing to a more streamlined and efficient production process.

Workforce Management

Workforce management (WFM) is a critical component of production efficiency because it directly impacts how well human resources are aligned with operational goals. Here are the key reasons why:

  • Optimal Staffing: WFM ensures the right number of workers with the right skills are available when needed, reducing overstaffing (which increases costs) and understaffing (which leads to delays or quality issues).
  • Productivity Monitoring: Through tracking attendance, breaks, and output, WFM helps identify performance gaps and opportunities to improve workflow or training.
  • Cost Control: Efficient labor scheduling and time management reduce overtime expenses, idle time, and unplanned labor costs.
  • Compliance and Risk Management: Proper WFM systems help companies stay compliant with labor laws, union rules, and safety standards, reducing legal and financial risk.
  • Employee Engagement: Transparent scheduling, fair workload distribution, and career development through performance data can boost morale and reduce turnover, which supports consistent productivity.
  • Forecasting and Planning: WFM tools use historical data to predict future labor needs based on demand, helping operations run smoothly during peak and off-peak periods.

Connected worker platforms are a vital solution for workforce management because they digitize and streamline the way organizations engage with their frontline employees, enabling real-time communication, task coordination, and data capture. These platforms empower workers by providing instant access to schedules, training, and support tools, while giving managers visibility into performance and resource needs. By collecting operational data at the source, they support better forecasting, faster decision-making, and improved compliance with safety and regulatory standards. Ultimately, they enhance agility, reduce inefficiencies, and ensure that the workforce is aligned with evolving production demands.

Improving Production Efficiency with Augmentir

Modern manufacturing is increasingly driven by digital transformation. Tools like Industrial IoT (IIoT), AI-powered analytics, and connected worker platforms are revolutionizing how factories operate. These technologies provide visibility into operations, uncover hidden inefficiencies, and support agile decision-making.

Connected Worker Technology is transforming the way manufacturers approach production efficiency by bridging the gap between frontline workers and digital operations. These platforms equip workers with real-time access to information, interactive digital work instructions, and collaboration tools—right at the point of work. By digitizing tasks, capturing live performance data, and enabling guided workflows, connected worker solutions ensure that every job is done accurately, efficiently, and consistently.

augmentir connected worker platform

With features like AI-driven insights, skills tracking, and remote expert support, Connected Worker platforms help manufacturers identify bottlenecks, reduce errors, and optimize workforce deployment. Tools such as Augmentir go a step further by personalizing guidance based on an individual’s skill level, automatically suggesting improvements, and helping identify opportunities for continuous training and upskilling. Ultimately, Connected Worker Technology empowers teams to work smarter, adapt faster, and drive sustainable gains in production efficiency.

Augmentir serves as a digital frontline operating system for your lean strategy, and helps improve production efficiency. With Augmentir, you can digitize, manage, and optimize all aspects of your frontline operation:

  • Daily Direction Setting (DDS)
  • Daily Management System (DMS)
  • Centerline Management
  • Clean, Inspect, Lubricate processes
  • Defect Management
  • Breakdown Elimination
  • Changeover Management
  • Shift Handover
  • 5S and Layered Process Audits
  • Quality Management on the Shop Floor
  • Safety

augmentir connected worker platform – digital frontline operating system for iws

 

Contact us today for a live demo.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

In conversations with our customers, a recurring theme emerges when discussing their transition to digital processes: the largest cost and burden often lies in the time and effort required to digitize existing paper-based materials.

In conversations we have with manufacturing companies, a recurring theme emerges when discussing their transition to a paperless operation: the largest cost and burden often lies in the time and effort required to digitize existing paper-based materials.

digitizing frontline work with the augie gen ai suite

Standard Operating Procedures (SOPs), work instructions, and checklists are typically built over years, representing a significant repository of organizational knowledge. Converting these into digital formats while maintaining accuracy and accessibility can be daunting.

Customers frequently express concerns about the resource-intensive nature of this transformation. It’s not just about scanning documents; it’s about rethinking and structuring them for digital workflows. Many find themselves needing to allocate substantial time to review, update, and adapt content to ensure it aligns with current operational realities and integrates seamlessly into new platforms.

 

This challenge is real for any industrial company undergoing a transformation to digital manufacturing. It also represents an opportunity … and this is exactly why we created Augie.

The Power of GenAI in Digitizing Content

Generative AI (GenAI) has transformative potential for digitizing content by automating the conversion of paper-based materials into structured, digital formats. It can analyze and extract information from documents like SOPs, work instructions, or checklists, quickly translating them into editable, standardized templates. GenAI also enables content enhancement, such as rewriting for clarity, integrating visuals, language translation, or adapting content for specific workflows. By accelerating the digitization process and reducing manual effort, GenAI empowers organizations to transition to digital systems more efficiently and cost-effectively.

Augie, a suite of Industrial Generative AI tools from Augmentir, revolutionizes industrial digital transformation by combining advanced AI capabilities with practical, human-centric applications. Augie uses generative AI and the power of advanced Large Language Models (LLMs) to transform digital content creation, create adaptive workflows, provide real-time worker guidance, and analyze data to deliver actionable insights.

 

Augie has been instrumental in helping us quickly transform our existing paper-based SOPs and training documents into interactive digital work instructions and learning tools. We’ve reduced our digitization effort from months down to days. This has streamlined our processes, reduced errors, and accelerated the upskilling of our workforce.

Digital Transformation Lead
Fortune 100 Food & Beverage Manufacturer

 

Augie for Procedure Creation

Augie is a powerful tool for accelerating the transition from paper-based to digital operations in manufacturing and industrial settings.

Quickly generate standard work procedures from Excel, Word, PDFs, images, or videos. The Augie Content Assistant takes your existing content and generates digital smart forms, checklists, and digital work instructions. Augie can summarize the exchange of tribal knowledge via collaboration and convert these to scalable, curated digital assets that can be shared instantly across your organization.

augie gen ai content assistant - convert video to procedure

Augie for Training Content

Augie, Augmentir’s GenAI assistant, makes it easier to convert paper-based information into tailored training content and quizzes for today’s less experienced frontline workforce. Augie automatically analyzes SOPs, work instructions, and other documents to create clear, simplified training modules. It generates interactive quizzes to reinforce key concepts and adapts learning materials to individual skill levels, ensuring workers engage with relevant content.

augie industrial copilot generative ai assistant for training and quiz creation

By streamlining this process, Augie reduces the effort and time required to create effective, hands-on training tools for workforce development.

Augie for Content Localization

Language translation and localization are crucial for ensuring work instructions and training materials are effective and accessible for frontline workers in manufacturing and any industrial setting. Providing materials in a worker’s native language increases comprehension, reduces errors, and enhances safety.

With Augie, content localization is easy. Augie’s content localization tools make work instructions and training materials more relatable and actionable. This investment fosters better workforce performance, inclusivity, and compliance with global standards.

augie gen ai suite assistant for content localization

The Next Phase of AI in Manufacturing is Here

Augie redefines the next phase of AI in manufacturing by seamlessly integrating generative AI into frontline operations to accelerate digitization, as well as enhance productivity and worker empowerment. Augie includes a complete suite of AI-powered assistants and AI services that help bridge the skills gap, accelerate onboarding, and ensure frontline workers are equipped with the knowledge they need to succeed.

The Augie Industrial Gen AI Suite transforms every stage of the Connected Worker Journey.

 

augie transforms your connected worker journey

 

Augie transforms every stage of the connected worker journey by providing a complete suite of AI tools that evolves alongside an organization’s needs. It begins with the digitization of processes and the conversion of static, paper-based content into dynamic, interactive digital workflows, making operations more accessible and efficient for frontline workers. As operations become connected, Augie leverages real-time data to deliver actionable insights, enabling companies to identify inefficiencies, improve workflows, and drive continuous improvement.

Beyond operational enhancements, Augie fosters continuous innovation through its extensibility and seamless integrations with other enterprise systems, creating a unified, scalable ecosystem that adapts to new challenges and opportunities. By addressing every phase of the connected worker journey, Augie empowers organizations to not only modernize their operations but also build a foundation for long-term success and innovation.

 

Now is the time to embrace the future of manufacturing—don’t miss out on the opportunity to empower your workforce and elevate your operations with Augie. Take the first step toward a smarter, more efficient manufacturing environment today.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

Centerlining in manufacturing is a methodology that uses standardized process settings to assure that all shop floor operations are carried out consistently.

For example, in manufacturing, it pinpoints which machine settings are needed to execute a given process and ensures operators implement those settings to avoid any defects on the shop floor. This works to decrease product and procedure discrepancies by improving machine efficiency.

centerlining in manufacturing

The type of machine configurations that can be centerlined to create quality goods that meet customer expectations range from temperature, speed, and pressure settings to the proper alignment of guard rails. When applied to a procedure, centerlining can substantially increase the number of sellable items, secure uniform product quality, and decrease production costs.

In a nutshell, employing a successful centerlining process can help optimize plant operations and reduce mistakes in product creation.

Learn more about how centerlining can improve everyday operations, and how to centerline a manufacturing process to yield the best output, in the following sections:

Centerlining methodology

Centerlining works by using specific machine settings per product (pressure, speed, temperature, etc.) to ensure processes are carried out the same way during each assembly line run.

Using the right centerline settings also has a side benefit: it lets operators identify problems as they happen. If workers know which process variables are triggering production delays, they can better control them to boost product quality output.

This can be achieved by creating a statistical process control chart to see which variables are causing interruptions to the assembly line and make any needed changes to the process. Creating a chart can also help workers identify procedures that are affecting the development of goods to ensure continuous improvement.

Centerlining goes hand in hand with total productive maintenance (TPM), a method which utilizes equipment, machine operators, and supporting processes to boost the quality and safety of production protocols.

How manufacturing efficiency can be improved by centerlining

Standardizing the appropriate machine settings can make everyday operations run more smoothly. For example, centerlining the requirements for each product can streamline changeovers, allowing workers to quickly reset their equipment and not lose time when switching to a new product run. This can prevent costly mistakes and reduce waste throughout the shop floor.

It also guarantees that all processes are completed in the same manner. Consistency helps ensure quality, especially when operators are setting up equipment for a production run. Failing to configure the right settings can increase the time for product changeovers and cause product deficiencies.

How to centerline a manufacturing process

Centerlining in manufacturing is a great way to troubleshoot product and procedure variations, oversee operations, and carry out statistical analysis to boost quality assurance and control.

Learn how to centerline a process by following the four steps below.

Step 1: Determine key process variables

It’s crucial to spot process variables that have the greatest effect on product quality to minimize any defects. Potential variables can include pressure, temperature, density, mass, and more.

Step 2: Identify machine settings for each variable

Then, look at which centerline settings can be applied to each process to ensure the creation of quality goods. Again, you’ll want to determine what has worked well in the past and use a statistical process control chart to set variable limits.

Important things to consider are: when the process has worked, which setting was best suited for that procedure, and how the two worked in conjunction with one another.

Step 3: Assess variable impact on production process and product

After you’ve identified the appropriate machine settings, it’s time to monitor how each variable impacts the production process and final product creation. Start by analyzing which assembly line runs yielded the highest production rate, factoring in things like equipment idle time, scrapped parts, rework, etc., to gauge what works and what needs improvement.

It’s vital that you have accurate, clear data to analyze. We recommend digitizing your centerlining process and results to correctly quantify the performance of each variable.

Step 4: Ensure centerline settings are always applied

Lastly, make sure that all operators are aware of and educated on how to best implement a centerlining process so that the right settings are applied each time. Failure to do so can result in mistakes and product deficiencies down the line. It’s best to provide all the necessary resources, steps, and training from the get-go to avoid costly errors. Digital work instructions and connected worker tools are a great way to ensure that operators are properly equipped to perform centerlining procedures.

centerlining with augmentir

At this stage, your manufacturing firm should have the proper reporting techniques to evaluate product quality against centerline procedures.

Interested in learning more?

Augmentir is a connected worker solution that allows industrial companies to digitize and optimize all frontline processes that are part of their TPM strategy. The complete suite of tools are built on top of Augmentir’s patented Smart AI foundation, which helps identify patterns and areas for continuous improvement.

augmentir connected worker platform

 

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

Your supply chain turns raw materials into finished products that meet customer expectations. It takes a whole network of people, from suppliers and manufacturers to distributors and partners, working together to produce the best quality products on the market. But how is it possible to build a “world class” supply chain?

According to Harvard Business Review, recent events such as the Covid-19 pandemic have exposed supply chain vulnerabilities and prompted a reevaluation of global approaches to improve resilience. Fortunately, the idea of a supply chain being world-class goes hand in hand with world class manufacturing, and there is a set of guiding principles to follow. Following them will help you successfully operate and manage a manufacturing firm that can remain competitive in the global marketplace.

world class supply chain

In this article, you’ll learn the five steps for building a world class supply chain and how Augmentir can help you transform the process:

  • 5 steps for making your supply chain world class
    • Step 1: Define clear objectives
    • Step 2: Gather necessary data
    • Step 3: Choose a supply chain management system
    • Step 4: Conduct supply chain network analysis
    • Step 5: Refine and improve
  • Elements of world class supply chain management and how Augmentir can help

5 steps for making your supply chain world class

Making your supply chain world class is about meeting or even exceeding customer expectations and delivering top-notch performance every time.

Step 1: Define clear objectives

Start by identifying overarching goals that will create consumer satisfaction. To help define those goals, ask yourself the following questions:

  • How much inventory needs to be stored, and where should it be?
  • Which modes of transportation would best balance out cost versus customer service objectives?
  • Which warehouses should administer which products to people?
  • How many warehouses are needed and what is the role of each?
  • What are the best routes to get products to customers the fastest?

Step 2: Gather necessary data

It’s important to gather the appropriate data to ensure that you’re meeting company-specific goals. For example, you may track data so you can keep an eye on product demand, transportation rates, lead times, and warehouse and inventory expenses.

Step 3: Embrace technology and digitalization

Leverage technology to automate manual tasks, improve visibility, and enhance decision-making. It’s crucial to pick software that addresses all of your production criteria and facilitates your unique business model. Adopt advanced supply chain management systems (SCM), enterprise resource planning (ERP) software, connected worker software, and warehouse management systems (WMS). Explore emerging technologies like blockchain, AI, and robotics to further optimize operations.

Step 4: Conduct supply chain network analysis

Once you’ve picked the perfect supply chain software, it’s time to analyze how well your production processes are faring. Consider evaluating if there are any gaps in product development and how long it takes for goods to be delivered.

Step 5: Refine and continually improve

Carefully examining your supply chain network and processes is a great starting point for becoming world class. But if you don’t make steady strides toward improvement, you’re left at a standstill. Things are constantly evolving in the manufacturing industry, so it’s helpful to check some of the following: production capacity, price fluctuations in raw materials, and any new large customer orders (especially if they were added in a different location).

Encourage a culture of learning, innovation, and continuous improvement within the organization. Promote employee engagement, provide training and development opportunities, and empower employees to contribute ideas for process optimization and supply chain innovation.

Continuous improvement is a must. So revisit your processes regularly, whether that’s monthly, quarterly, or annually.

Elements of world class supply chain management and how Augmentir can help

Implementing a world class supply chain management system can change the way manufacturers handle daily operations.

A world class supply chain usually is:

  • Customer focused: Consumers should be at the forefront of all production activities to ensure that goods are being made and sold in a timely, cost-effective manner.
  • Adaptable to changes: The manufacturing industry is changing fast, so manufacturers have to be responsive to changing customer demands, market factors, and more.
  • Collaborative: An effective supply chain fosters strong relationships among manufacturers, suppliers, distributors, and customers.
  • Highly efficient: Incorporating streamlined production processes, smart tech, and other resources is crucial to stand out among competitors.
  • Innovative: Constantly improving procedures drives growth and innovation.
  • Sustainable: Implementing sustainable techniques for cutting waste and maximizing productivity can lead to significant savings over time.

 

This is where Augmentir can help. We offer the world’s first AI-powered connected worker solution that advances how manufacturing firms handle day-to-day supply chain and other operations.

manufacturing kpi first time right

Our software lets you provide digital standard operating procedures for how to complete routine tasks and get the most out of worker output and productivity. We’ve helped frontline workers reduce training and rework time by 76%, and increase productivity levels by 36%.

With our software, you can build a world class supply chain that empowers workers across departments to make and deliver products of the highest quality. Request a live demo to learn more on how we’re the right fit for you!

Connected frontline operations platforms are helping manufacturers reduce downtime and provide a foundation for a holistic preventive maintenance strategy.

Downtime in manufacturing refers to a period of time when a production line or machine is not in operation due to maintenance, repairs, or other issues. This can result in a loss of productivity, increased costs, and missed production targets, and it is estimated that in the US alone it costs manufacturers around $1 trillion dollars per year. Not surprisingly, the biggest factors that contribute to unplanned downtime are human error and improper maintenance.

To minimize downtime, manufacturers are turning to digital technology to transform their frontline operations and provide a foundation for a holistic preventive maintenance strategy.

reduce downtime in manufacturing

Reducing downtime with a Connected Frontline Operations Platform

Manufacturers often implement Total Productive Maintenance (TPM) as part of a more comprehensive preventive maintenance approach. TPM is a strategy commonly used in manufacturing and production operations to improve the effectiveness and reliability of equipment, which in turn can increase productivity and reduce downtime.

Total productive maintenance strives to reduce workplace losses by placing the responsibility of basic maintenance upkeep on the primary equipment user: the machine operator. This preventive practice consists of “8 pillars” to help improve equipment reliability and elevate worker productivity:

Autonomous Maintenance as pillar of TPM

At the front of this framework is Autonomous Maintenance. Autonomous maintenance is a technique used in TPM that involves giving operators and other frontline employees the responsibility and authority to take care of their own equipment and work areas (e.g cleaning, safety checks, etc.). This can improve employee engagement by giving them a sense of ownership over their work and equipment, as well as a greater understanding of how their actions can impact productivity and quality. Additionally, involving employees in the maintenance process can lead to improved communication and teamwork, which can further enhance engagement.

This is where frontline operations platforms come into play.

Connected frontline operations platforms are digital software tools that can help standardize and improve the way operators perform maintenance tasks. They are used to improve communication, training, collaboration, guidance, and support for the operators.

Reduce machine downtime with Augmentir’s Connected Worker Solution

See how Augmentir can help you implement an effective autonomous maintenance program and optimize your frontline operations.

Get a Demo

downtime dashboard

Your connected workforce – a key to reducing downtime

Factory workers can have a significant impact on downtime in manufacturing. Whether it’s due to mistakes made by operators, non-optimal scheduling, or lack of communication, your workforce is at the center of your frontline operations. Factory workers can impact downtime in a variety of ways:

  1. Improper operation or maintenance: If factory workers are not properly trained on how to operate and maintain equipment, they may inadvertently cause downtime by making mistakes or not following proper procedures. Modern connected worker tools, like Augmentir’s connected worker solution, are increasingly being used to streamline training and digitize skills tracking to help ensure that the right people with the right skills are on the job.
  2. Safety incidents: Workers who do not follow proper safety procedures can cause accidents that lead to downtime while equipment is repaired or replaced. By digitizing safety procedures, manufacturers can ensure that workers perform the proper steps, and follow the proper protocols before performing a maintenance routine.
  3. Human error: Workers may make mistakes that lead to downtime, such as not properly setting up equipment or not noticing when a machine needs maintenance. Properly training employees on how to maintain and operate equipment can help to minimize downtime due to human error
  4. Quality issues: Workers may produce products that do not meet quality standards, which can lead to downtime while the products are reworked or scrapped.
  5. Lack of proper communication: Having clear and effective communication channels can help to quickly identify and address any issues that arise. Frontline communication tools like Augmentir can help improve communication and digitally record issues to better understand root causes. By identifying the underlying causes of downtime, manufacturers can take steps to prevent similar issues from occurring in the future.
  6. High turnover rate: High turnover rate can lead to a lack of experienced workers and can cause downtime while new employees are trained. While it’s difficult to completely prevent a high turnover rate, you can take measures to both expedite training for new hires, as well as create a more engaged, more empowered workforce. For example, Augmentir’s connected worker solution helps to accelerate new hire training and onboarding, and provides a skills management framework that helps to ensure that workers are excelling at their jobs.

It is important to note that factory workers are a crucial part of the manufacturing process and their role is vital for the success of the business. However, by providing workers with proper training, safety procedures, and communication channels, downtime in manufacturing due to human error can be reduced. Additionally, involving workers in the decision-making process and continuous improvement initiatives, can help to increase their ownership and responsibility towards the equipment, processes, and the whole factory’s performance.

Interested in learning more?

Augmentir is a connected worker solution that allows industrial companies to digitize and optimize all frontline processes that are part of their TPM strategy. The complete suite of tools are built on top of Augmentir’s patented Smart AI foundation, which helps identify patterns and areas for continuous improvement.

manufacturing kpi first time right

 

Discover how Augmentir’s Gen AI Suite and Augie transforms how manufacturers support frontline activities and personnel.

We recently unveiled a watershed moment in connected worker technology history with updates and expansions to Augie, our generative AI assistant for industrial work. This expansion drastically improves the breadth and reach of Augie’s capabilities, enhancing the already powerful tool even more and creating a generative AI suite of tools and assistants for frontline industrial work. This first-of-its-kind Augie GenAI Suite, redefines the future of manufacturing, empowering frontline workers everywhere with unmatched AI-driven tools.

But what does this mean for manufacturers and industrial organizations looking to improve their operations and how can Augie help you?

augie industrial generative ai assistant manufacturing

Basically, this suite of generative AI assistants includes dedicated capabilities for companies to enhance their Troubleshooting, Operations, Data Insights, and Content Creation; and even introduces a GenAI-as-a-Service option. This expands on Augie’s existing capabilities for advanced troubleshooting and real-time digital assistance to frontline workers and adds further abilities for advanced safety/risk mitigation, worker compliance, workforce development, knowledge management and training, quality management, and more.

Read below to learn more about the new Augie GenAI Suite, what it can do, what it means for the future of manufacturing work, and how it can help you.

Augie’s Expanded Suite of GenAI Assistants

The Augie suite transforms frontline manufacturing like never before – giving teams instant access to expert knowledge, next-level data insights, and seamless operational support. From troubleshooting to operations and content creation, the possibilities are endless.

Introducing a first-of-its-kind GenAI Suite for industrial work:

Augie Industrial Assistant 2.0

Enhancements include support for dozens of new content types, the addition of patented-pending prompt enrichment, and superior prioritization, resulting in increased accuracy and actionability.

Augie Content Assistant

Automatically convert existing digital content (Word Excel, PDF, etc.) into native Augmentir Work instructions, SOPs, OPLs, CILs, Checklists, etc., accelerating deployment. Generate Training, Checklists, and Quizzes from a wide range of source types including images, manuals, free-form tests, etc., to streamline worker training and onboarding.

Augie Data Assistant

Augie provides insights from any source of operational data, including standard data sets such as Skills, Standard Work, Safety, and Work Execution, as well as customer-specific datasets generated through Augmentir’s report configurator. Augie eliminates/reduces the need for “report writing” and, through its conversational interface, answers questions, performs math, and generates graphical reports, increasing responsiveness.

Augie Extensibility Assistant

The Extensibility Assistant increases the productivity of developers building new and supporting existing user-defined functions in Augmentir’s extensibility framework. Augmentir’s unique Platform-as-a-Service capabilities enable customers and partners to create unique capabilities to solve important business problems, a capability not available elsewhere in the market

Augie Industrial GenAI-as-a-Service

As an industry first, Augie exposes its GenAI capabilities as APIs in Augmentir’s extensibility framework, enabling companies and partners to utilize Industrial genAI within innovative, company or vertical-specific use cases. Commonly used APIs include translateText enabling on-the-fly translation of dynamic content, and imageQA, enabling direct comparison or summarization of images, supporting critical applications in Quality, Safety, and Operations.

This is a true game-changer for frontline manufacturing personnel, equipping them with expert knowledge, advanced tools, and intuitive support like nothing has before. But more than that, these are not just simple upgrades, this is the future of manufacturing, right at the fingertips of those who matter most – frontline personnel.

Advantages of Generative AI Assistants in Manufacturing

Generative AI assistants in manufacturing streamline production by automating repetitive tasks, reducing human error, and optimizing workflows. They enhance decision-making through real-time data analysis, leading to increased efficiency and cost savings. Augie is unique among other smart manufacturing assistants in that it leverages proprietary fit-for-purpose, pre-trained LLMs and generative AI, coupled with robust security and permissions, to help factory managers, operators, and engineers improve efficiency, resolve issues faster, and prevent downtime.

Through Augie, manufacturers can instantly:

  • Close skills and experience gaps with personalized support
  • Gain insights into Leader Standard Work
  • Gain new insights into skills inventories
  • Convert Tribal Knowledge into Digital Corporate Assets
  • Identify opportunities for continuous improvement
  • Forecast potential operational issues

The expansion of the Augie tool kit further enhances these capabilities, allowing for more advanced and adaptable functions such as those described above. With the Augie GenAI suite by your side, the potential for improved frontline support, optimized manufacturing operations, and the empowerment of frontline industrial workforces is limitless.

Supporting Frontline Workers with GenAI Assistants

Augmentir introduced Augie in early 2023, becoming the first software provider in the manufacturing sector to offer a generative AI solution focused on the industrial frontline workforce.

Since its launch, Augie has seen massive support from leading manufacturing organizations. It has been applied by these global leaders across all manufacturing and production types, helping prevent safety and quality issues at the point of work, driving operational efficiency, and giving frontline workers the tools, guidance, and support they need to do their best work.

Augie’s generative AI capabilities are built into the core of the Augmentir platform, so users can quickly and securely leverage the latest AI advances within the framework of digital collaboration, skills management, and work execution. This allows frontline users and other manufacturing personnel to leverage existing data, documents, applications, and their existing tribal knowledge, increasing their ROI.

Interested in learning more?

To learn more about Augie and how it has the potential to transform and augment your frontline workers and activities with patented AI-driven insights and to learn why Augmentir is trusted by leading manufacturers as a reliable digital transformation partner – schedule a demo with one of our product experts.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

The evolution of connected worker software, how industrial transformation leaders are meeting modern challenges with a generation of tools.

Beginning in mid-2022 and now increasing in 2023, there is a significant trend of companies moving away from earlier investments in connected worker software tools to Augmentir’s Connected Worker Platform.

Early adopters and pioneers of V1.0 connected worker tools and technology deserve respect for leading the charge into Industry 4.0 and the concept of a connected workforce. However, we also admire those leaders who realized there are more transformations and improvements to make – such as value in the data from your connected workers and incorporating AI-driven solutions to make sense of that data. These innovative leaders dared to adapt, continue innovating, and replace the connected worker software systems that were not solving enough of the challenges faced by the modern workplace.

darwin in manufacturing

By combining AI-powered software and smart connected worker solutions, manufacturers are able to get next-level results and improve frontline worker productivity, engagement, and safety.

Following in the Footsteps of Industrial Transformation Leaders

According to LNS Research (a leading analyst firm in defining the connected worker space), the business case for connected worker software continues to grow, and solutions that incorporate emerging technologies like AI are leading the way. In fact, LNS states that Industrial Transformation Leaders (IX Leaders) are two times more likely to use AI-enabled advanced analytics capabilities. These leading manufacturers are supporting their frontline operations with AI-based technology for training and skills development, real-time worker performance support, and providing dynamic and personalized content.

Here at Augmentir, we have seen quite a few companies that fall into the category of the courageous, understanding that they needed to continue adapting for their business to thrive.

We have been honored to be recently chosen by several global leaders as their connected worker V2.0 solution, including:

  • one of the largest paint manufacturers in the world
  • one of the largest agricultural companies in the world
  • one of the largest food manufacturers in the world
  • one of the largest manufacturers of batteries in the world

All of these world leaders recognized that their current connected worker software solutions had become insufficient and that they needed a smarter, more complete solution to help them overcome their frontline workforce challenges and current business obstacles.

Here are three key takeaways you can use from these companies that went back to select a new connected worker solution:

  1. Don’t be afraid to make a change that will have a positive impact on your business, even if you are the one who made the initial decision.
  2. If you have experience choosing early connected worker tools, build on that experience. You are ideally situated to identify gaps in processes and improvement needs; and know best which tools to use to address the overall operational needs of the business.
  3. Use your prior experiences to build processes for re-evaluating connected worker solutions from the perspective of already experiencing one fully deployed.

In one example, a global manufacturer invested in an early connected work tool and had been using the tech for nearly 4 years. However, once they decided they needed a new solution, they then went back to evaluate the market for the right tool. They made a list of selection criteria they knew they wanted from this new solution, from that they looked at approximately fifteen (15) connected worker vendors, and from there they narrowed down to the three (3) they ended up testing. They even included having a couple of integrations in their POC as they knew that an integration into their ERP, Quality Management, and Asset Management systems was something they needed, and they had poor experiences previously with vendors overcommitting.

Pro Tip

We suggest anyone evaluating a technology use this same approach – include integrations as part of your Proof-of-Concept to ensure that you are not getting hypothetical answers to hypothetical questions, and that the solution meets your true business needs.

What our customers tell us

Here is what customers are telling us they are looking for in a V2.0 connected worker solution, and the reasons they changed to Augmentir’s Connected Worker Platform:

  1. Ease of Use: Augmentir prioritizes a user-friendly experience. Its intuitive interface and workflow builder makes it easy for employees to adopt and use the tool effectively. This can result in faster onboarding and increased overall productivity.
  2. Augmented, Personalized Work Instructions: Augmentir provides a workflow and content creation environment that allows you to digitize standardized work instructions, and adjust content and in-line training to suit the needs of individual workers.  This optimizes performance and speeds up onboarding time for new employees.
  3. Upskilling and Reskilling: Augmentir’s ability to deliver formal skills and learning in the flow of work means a worker can stay current in their needs, continue to grow in their role, and build a structured career path within their company. This approach appears to be driving increased retention and job satisfaction.
  4. Workforce Optimization: Augmentir’s ability to assess in real time who is available to work on any given day and then balance the skill level best suited for a task with the available workforce offers optimal productivity based upon what you have to work with on any given day.
  5. Digitizing Complex Workflows: Most solutions on the market allow you to digitize simple workflows. With Augmentir, manufacturers can build complex workflows that satisfy use cases that are unique to their business, and extend those workflows to support greater integration into their business processes.
  6. Industrial Collaboration: Augmentir enables remote collaboration among workers and experts. This functionality is particularly useful when experts are not physically present at the job site. Remote experts can guide workers through AR annotations and audio/video communication, fostering knowledge sharing and faster problem resolution.
  7. Continuous Improvement: Augmentir focuses on driving continuous improvement within organizations. It leverages AI to analyze data from worker interactions and identifies areas for improvement. This data-driven approach allows companies to optimize processes, increase productivity, and reduce costs over time.
  8. Integration and Scalability: Augmentir offers integration capabilities with existing enterprise systems, such as enterprise resource planning (ERP) or manufacturing execution systems (MES). This ensures seamless data exchange and workflow integration. Additionally, Augmentir is designed to scale with the organization’s needs, accommodating both small teams and large enterprises.
  9. Analytics and Insights: Augmentir provides robust analytics and reporting features driven by AI-powered solutions and focuses on AI as a core component of Connected Worker V2.0. This allows managers and supervisors to gain valuable insights into worker performance, task completion times, and areas that may require additional training or support. Data-driven analytics can aid in identifying bottlenecks, optimizing processes, and making informed business decisions.
  10. Customization and Flexibility: Augmentir allows organizations to customize their work instructions and workflows to fit their specific needs. This flexibility enables the tool to adapt to different industries, processes, and work environments.

 

If you are interested in learning for yourself why companies are choosing to change to Augmentir over their current connected worker solution – reach out to book a demo.

 

See Augmentir in Action
Get in Touch for a Personalized Demo