Posts

Augmentir CEO Russ Fadel had the opportunity to be interviewed recently by Ann Wyatt, Industry 4.0 and IIoT Enthusiast, for the OnRamp Manufacturing Conference.

Earlier this month, Russ Fadel had the opportunity to be interviewed by Ann Wyatt, Industry 4.0 and IIoT Enthusiast, for the OnRamp Manufacturing Conference. OnRamp Manufacturing is the leading conference for manufacturing innovation that brings together the manufacturing industry’s leading corporations, investors, and startups. The conference highlighted innovations disrupting the manufacturing industry, the leaders making such innovations possible, and how new technologies and business models will reinvent the industry. 

In this exciting interview, Ann and Russ discussed some of the top challenges that today’s manufacturers face, and how technology such as AI and connected worker solutions that recognize the variability in today’s workforce are empowering workers by giving them tools and resources that will set them up for success. 

The following is a recap of some of the highlights of the discussion.

The great resignation is upon us now

The consistent story of the manufacturing workforce is that there is an aging workforce and 30-40% of that workforce will leave within the next 5 years, taking valuable, hard to capture tribal knowledge with them. Many manufacturers were under the misconception that the remitting workforce would pass down their knowledge to the next generation as they did before. However, this was a big misconception. Even prior to Covid, the dynamics of the workforce themself have changed. In the last 5 years, the tenure of manufacturing workers is down to 17% and that decrease escalated even more as a result of the pandemic.

The stability of the workforce has decreased in the past 8 years. Old work processes were designed during a more stable time and unfortunately aren’t applicable for this generation of workers. Today’s workers are in the factory less frequently, don’t stay as long, and due to Covid, may be out for short periods of time, resulting in the need for a more dynamic workforce. To deal with this rapidly changing workforce, manufacturers will need a more data-driven approach powered by AI to empower their workforce.

A highly effective, cross functioning workforce

Over the years, the manufacturing industry has done a really good job of connecting machines into the fabric of the business and giving operators the necessary data to help run those machines better. Our frontline workers, the last piece of connectivity, are the least connected set of workers in the company. Frontline workers should be fully integrated into the fabric of the business from a collaboration standpoint so that they can access the data they need as well. Secondly, when they are working, it needs to be understood what workers are doing well and what they are struggling with, so we can match people with the tasks that they already excel at.

Top trends and key challenges in today’s workforce

At the highest level, everyone is talking about the disruption of the mobile supply chain. The role of the manufacturer is to put supply into the supply chain and to safely build products at acceptable quality and productivity levels, matching today’s workforce with today’s task load. 

The new dynamics of the workforce (lots of turnover, shorter tenure, people leaving abruptly) are at odds with what manufacturers are trying to do, which is to be a stable source of supply to the global supply network. Technology today, specifically AI, lets us understand at a data-driven level and in real time how workers can perform at their individual best, based on their training experience and raw ability for a specific task.

How Hybrid Work is impacting the manufacturing workforce

With Covid came an immediate need for remote presence, but the real issue is the idea that a subject matter expert needed to be on site for support. This way of working is now a thing of the past. When we think about having frontline workers fully connected to the organization, at any moment in time, they should have direct access to the tools and resources that would help them do their job better. Connected work in the future means using AI to allow frontline workers to have access to internal and external resources that are appropriate for them at their fingertips.

Another interesting statistic resulting from Covid is that employee engagement is down almost 20% from pre-Covid times. Manufacturers are always concerned about employee engagement, particularly with certain jobs that might be repetitive. AI is extremely helpful in measuring signals of engagement but also provides tools to the organization to increase the level of engagement of frontline workers. One thing that causes a reduction in engagement is when a worker feels like they can’t perform a job so they become frustrated. 

Using AI to give frontline workers the tools and information they need when they need it is one way to help increase engagement. The other way is to let them feel connected to the actual importance of their work.

Hiring, Training & Reskilling

The new workforce dynamics and the nature of hybrid work are also now forcing manufacturers to re-think employee onboarding and training.

The historic methods of onboarding and training taught workers everything they could “possibly” do which resulted in overtraining. The data-driven era we’re entering into is one of continuous learning and development powered by AI. Training shifts from the things frontline workers are possibly going to do to what they are probably going to do. This results in reduced training times, continuous learning and development, and the ability to upskill at any point as needed. Learning is always available, training content is available to the worker on the shop floor at the time of need. Reducing the initial onboarding training and allowing training to occur at the moment of need, coupled with AI for scoring, provides insights into the most effective training modules as well as what needs to improve based on demonstrated execution.

Transforming Today’s Workforce with AI & Connected Worker Tools

One challenge with connected worker data is that it’s inherently noisy. In many cases, up to 37% of the signals that come back are not representative of what is actually happening. Fortunately, AI excels at recognizing patterns in noisy data, so we can use that to focus companies on the work processes that have the most opportunity, allowing organizations to understand their actual proficiency at any procedure or job. This helps them understand current workforce skills and where they should invest if they want to get the largest return, with AI being the driving technology that unlocks those signals in noisy data.

 

AI is largely embedded in most aspects of our lives. It will play an equally large role in helping the connected workforce progress and become part of the 21st-century solution and the next generation of how people work. Adopting these methodologies early on will make the overall digital transformation process a lot easier for manufacturers.

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Manufacturing performance management is the process of setting, monitoring, and optimizing key performance indicators (KPIs) related to production processes and workforce performance in manufacturing environments. It includes real-time monitoring and evaluation of employees’ work, as well as the continuous improvement of operational workflows to ensure optimal efficiency, product quality, and adherence to both safety requirements and organizational goals.

performance management in manufacturing best practices

Through data-driven insights, performance management software, and regular assessments, performance management aims to enhance employee productivity, reduce downtime, and maintain a competitive edge in the industry. Read our blog post below to learn more about performance management in manufacturing including:

5 Best Practices for Performance Management in Manufacturing

To get the best value from your performance management system here are five best practices for performance management in manufacturing:

1. Clear Goal Alignment:

Organizations must ensure that performance management processes align with overall organizational goals. They must clearly communicate objectives to employees at all levels, linking individual and team performance metrics to broader manufacturing and business objectives. This fosters a sense of purpose in frontline teams, engages workers, and helps employees understand how their efforts contribute to the company’s success.

2. Real-time Monitoring and Data Analytics:

Implement real-time monitoring of production and shop floor processes and equipment performance through the use of AI and connected worker technology. Utilize data analytics and AI-driven processing to gain insights into worker performance trends, identify bottlenecks, and facilitate data-driven decision-making. The ability to monitor operations in real-time not only enables proactive interventions to maintain efficiency, it also ensures fairness, accuracy, and transparency in performance measurement.

Pro Tip

Performance management software in manufacturing is crucial for optimizing production efficiency, and should integrate with other manufacturing systems, such as Learning Management Systems (LMS), Enterprise Resource Planning (ERP), and Manufacturing Execution Systems (MES), to provide a holistic view of the entire manufacturing operation.

A

3. Employee Training and Development Programs:

Prioritize ongoing training and development programs for manufacturing personnel. Equip frontline workers with the necessary skills to adapt to evolving technologies and operational requirements. Use performance management systems and other digital tools like skills matrixes to identify skill gaps, set training goals, and track progress, ensuring a skilled and adaptable workforce.

4. Regular Performance Reviews and Feedback:

Conduct regular performance reviews that provide constructive and timely feedback to employees. Use these reviews as opportunities to recognize achievements, address areas for improvement, and set new performance goals. Foster open communication between managers and employees to encourage continuous improvement.

5. Integration with Continuous Improvement Initiatives:

Integrate performance management systems with “kaizen” or continuous improvement initiatives such as Lean or Six Sigma. Use data from performance metrics to identify opportunities for process optimization, waste reduction, and efficiency improvements. This ensures that performance management is not only evaluative but actively contributes to the ongoing enhancement of manufacturing processes.

Leveraging these best practices contributes to a holistic performance management process that aligns manufacturing organizations and their frontline workforce with strategic goals, optimizes operations, and creates a culture of continuous improvement.

Key Performance Management Strategies for Manufacturing Leaders

The following are a few examples of performance management strategies that manufacturing leaders, plant managers, and shift supervisors should consider when implementing their performance management process.

Line-shift Goals

Manufacturers often use production planning and scheduling systems to manage line shifts effectively and ensure a smooth transition between different production configurations. While line shifts in manufacturing are often necessary for adapting to changing demands, introducing new products, or optimizing efficiency, they can also pose challenges, including downtime, quality control issues, employee fatigue, and planning issues. By establishing clear and measurable objectives for each line shift or individual worker that aligns with organizational goals, production leaders can ensure production goals are met.

Individual Meetings and Communication

Manufacturing leaders should implement a performance management strategy that incorporates 1-1 meetings and communication. Regularly providing constructive feedback to employees on their performance can improve performance and boost employee engagement. Offering coaching and development opportunities to enhance skills and capabilities.

Continuous Training

Continuous training in manufacturing involves enabling workers to learn new skills regularly. It’s a great way to improve employee performance and innovation, as well as engage and retain top talent. A good example of a continuous learning model is everboarding, a modern approach toward employee onboarding and training that shifts away from the traditional “one-and-done” onboarding model and recognizes learning as an ongoing process.

Performance Management Tools

Implementing performance management tools can help automate ongoing employee evaluation, as well as align employee performance with other key manufacturing KPIs, including production quality, machine uptime, and labor utilization. These tools can also be used to identify continuous improvement opportunities. This allows manufacturing leaders to adapt and refine approaches based on feedback and outcomes.

Simplifying Performance Management with Digital Tools

According to Forbes, as the future of work evolves and changes so must performance management, traditional methods may no longer be as successful in an era where the workforce is constantly changing.

Digital tools such as connected worker solutions and AI-driven analytics help simplify performance management systems by streamlining processes, improving efficiency, and providing more accurate insights. Implementing these connected worker solutions automates the collection of performance-related data from various sources including connected frontline workers, IoT devices, software systems, and more. This eliminates the need for manual data entry, reducing errors and ensuring real-time access to up-to-date information.

By digitizing the performance management process, organizations create a centralized platform for storing and managing performance-related data. This centralized knowledge base makes it easy for managers and employees to access relevant information, track progress, and collaborate on performance goals. Furthermore, AI-driven connected worker solutions allow for digital performance tracking, customized training and skills development planning, workflow optimization, and improved predictive maintenance.

digital skills management in a paperless factory

Through these digital tools and technology, manufacturing companies can simplify performance management processes, improve operational efficiency, and adapt to the demands of a rapidly evolving industry while fostering a culture of continuous improvement and development for their manufacturing workforce.

Augmentir is the world’s leading connected worker solution, combining smart connected worker and AI technologies to drive continuous improvement and enhance performance management initiatives in manufacturing.

Augmentir is trusted by manufacturing leaders as a digital transformation partner improving training and development, workforce allocation, and operational excellence through our AI-driven True Productivity™ and True Performance™ offerings, as well as digitizing and optimizing complex workflows, skills tracking, and more through our patented smart, connected worker suite. Schedule a live demo today to learn more.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Onboarding and training are essential components of integrating new employees into a manufacturing environment. Research by Brandon Hall Group found that organizations with a strong onboarding process improve new hire retention by 82% and productivity by over 70%. Additionally, research from NAM and The Manufacturing Institute has found that manufacturing organizations invest an average of 51.4 hours per employee in training and are increasing overall investment in training by an average of 60% in response to the growing skilled labor crisis.

onboarding vs training in manufacturing

Onboarding and training are two key components of a skilled workforce that, while similar, serve different purposes and cover distinct aspects of the employment process.

Both processes are crucial, as onboarding ensures that employees understand the organization’s broader context, and training ensures that they have the expertise to contribute to the manufacturing processes and meet quality and safety standards.

A successful combination of effective onboarding and comprehensive training can lead to more engaged, skilled, and productive employees in the manufacturing industry. Unfortunately, according to Gallup, only 29% of new hires say they feel fully prepared and supported to excel in their role after their onboarding experience.

Read below to learn more about the differences between onboarding and training in manufacturing, why they are both critical to manufacturing success, the benefits of improving them, and how continuous learning strategies coupled with connected worker solutions can improve both and deliver impressive results.

Breakdown of Onboarding and Training Differences

Onboarding in manufacturing is about orienting new hires to the company as a whole, while training is about equipping them with the specific skills and knowledge needed to perform their job functions effectively. Below a breakdown of the differences between onboarding and training in a manufacturing setting:

Onboarding

  • Purpose: Onboarding integrates a new employee into the organization and its culture. It aims to familiarize employees with the company, its policies and procedures, and their roles within the organization.
  • Focus: Onboarding focuses on introducing employees to the broader aspects of the company, such as its mission, values, and culture, as well as administrative and safety procedures.
  • Duration: Onboarding is typically a short-term process, often lasting a few days, but could extend to a few months in certain manufacturing environments.
  • Components: It may include activities like completing paperwork, understanding company policies, meeting the team, plant/site safety, and familiarizing a new hire with the physical workplace.

Training

  • Purpose: Training in manufacturing is a more specific and in-depth process that imparts the knowledge, skills, and competencies necessary to perform the job effectively. It is task-oriented and aimed at ensuring that employees can carry out their roles proficiently.
  • Focus: Training focuses on the technical aspects of the job, safety protocols, equipment operation, quality standards, and other job-specific skills.
  • Duration: Training is an ongoing process and may vary in duration depending on the complexity of the role and the employee’s experience level.
  • Components: Training tends to include hands-on instruction, demonstrations, practice exercises, and assessments to ensure that employees gain the necessary skills and knowledge.
Pro Tip

Both initial onboarding and ongoing training can be implemented with mobile learning solutions that leverage connected worker technology and AI to provide workers with bite-sized, on-demand training modules that they can access on smartphones or tablets. These modules can be developed with customized learning paths that are focused on the type of tasks and work employees are doing on the factory floor.

A

Why are training and onboarding important to manufacturing success

Onboarding and training are crucial to manufacturing success for several reasons including safety, compliance, quality, and more. A well-trained manufacturing workforce that has a deep understanding of company policies, its mission, and overall values drives successful initiatives by producing quality products, complying with both industry-wide and company-specific standards, and meeting production goals in a manner that is both safe and efficient.

The manufacturing industry is subject to numerous regulations related to safety, environmental practices, and product quality. Proper training ensures that employees are aware of and adhere to these regulations, reducing the risk of compliance violations and a well-structured onboarding program leads to lower turnover rates and a more effective and cohesive workforce, ultimately contributing to manufacturing success.

In summary, onboarding and training in manufacturing are essential for setting the stage for employee success and overall organizational success. Onboarding aligns new employees with the company’s culture, policies, and expectations, enhances their safety awareness, and fosters engagement and productivity, while training plays a pivotal role in contributing to manufacturing success by equipping employees with the knowledge, skills, and competencies necessary to perform their roles effectively.

What are the benefits of improving training and onboarding in manufacturing

Improving manufacturing employee onboarding and training offers several advantages, benefiting both the company and its employees. Comprehensive onboarding makes new hires feel connected to the company’s culture and values, while ongoing training can offer growth and development opportunities, leading to increased employee engagement and job satisfaction.

Companies with a skilled, well-trained workforce are more competitive in the marketplace, as they can produce higher-quality products at a lower cost and adapt to industry changes more effectively.

Training and development opportunities are often cited as a key factor in employee satisfaction. When employees feel that their skills are being enhanced and their careers are advancing, they are more likely to be satisfied with their jobs.

How continuous learning and connected worker solutions improve training and onboarding in manufacturing

Continuous learning and connected worker solutions can significantly enhance training and onboarding in manufacturing by providing more dynamic, effective, and adaptable approaches.

By incorporating continuous learning and connected worker solutions into the training and onboarding process, manufacturing companies can create more efficient, engaging, and rewarding experiences for employees. This not only accelerates the integration of new employees but also supports ongoing skill development and knowledge retention once on the job, ultimately improving productivity and the overall success of the organization.

connected worker as part of connected enterprise

Augmentir’s AI-based connected worker solution is being leveraged by manufacturing leaders to deliver continuous learning and development tools to optimize onboarding training for a rapidly changing and diverse workforce. Our innovative, smart connected worker suite is transforming how manufacturing organizations hire, onboard, train, and deliver on-the-job guidance and support.

 

digital skills management in a paperless factory

Schedule a live demo today to learn how our smart, connected worker solutions, AI-driven insights, and digital skills management are optimizing training and onboarding programs, tracking individual and team progress, and delivering targeted training and upskilling.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

At first glance, training and skills development seem synonymous and are often used interchangeably, but they have different purposes and goals. However, despite these differences, both are equally important for every organization, especially in the case of the manufacturing industry. According to Training Magazine, 57% of manufacturing organizations reported training and workforce development budget increases to address the widening skills gap and the skilled labor shortage.

the difference between skills development and training in manufacturing

At the most basic level, training is the process companies use to build the skills of new employees so they’re well-equipped to perform the role that they were hired for. While skills development, on the other hand, includes ongoing education, mentoring, and professional experiences that help employees grow into future roles and opportunities.

Both are extremely valuable to overall organizational growth and success, however, it’s important to apply them at the right time and in the right way. Read more on both skills development and training in manufacturing, why they are important, and how they can be improved and enhanced through the proper application of learning technology:

What is Skills Development in Manufacturing

Skills development goes beyond training by aiming to enhance a broader set of competencies and capabilities. It focuses on building a more well-rounded and adaptable workforce encompassing not only the acquisition of specific skills, but also the improvement of problem-solving abilities, critical thinking, creativity, adaptability, and continuous learning.

Skills development in manufacturing refers to the process of enhancing the knowledge, abilities, and competencies of individuals involved in the manufacturing process. It involves providing training and education to workers, engineers, and technicians to improve their technical, operational, and problem-solving skills. By providing training and development opportunities, manufacturing organizations can ensure that their workforce possesses the necessary skills and knowledge to perform their jobs effectively and efficiently.

Many manufacturing industries face a shortage of skilled workers. Skills development programs help bridge the gap by training existing employees or new hires in the required competencies.

Overall, skills development in manufacturing is crucial for maintaining competitiveness in a rapidly changing industry. It ensures that the workforce remains adaptable, skilled, and capable of meeting the evolving demands of modern manufacturing processes.

Pro Tip

Implementing skills management software programs allow manufacturing organizations to digitize and effectively track worker skills, development progress, and intelligently assign work based on skills competencies, improving work allocation and workforce utilization.

A

What is Training in Manufacturing

Training in manufacturing primarily focuses on imparting specific knowledge, skills, or information to individuals. It often involves structured and organized programs designed to teach employees how to perform specific tasks or operate machinery and equipment. Training is often of shorter duration and may be task-specific or role-specific. It is designed to quickly bring employees up to a certain proficiency level in their current job.

The specific type of training required in manufacturing depends on the roles and responsibilities of the individuals involved, the company’s processes, and the industry in which they operate. Training in manufacturing is essential for several reasons:

  • Safety: Manufacturing processes often involve machinery, equipment, and materials that can be hazardous. Proper training ensures that employees understand and follow safety protocols, reducing the risk of accidents and injuries.
  • Quality Control: Quality in manufacturing is a critical, essential factor. Training programs teach employees how to maintain consistent product quality through accurate measurements, inspections, and adherence to quality standards.
  • Operational Efficiency: Training helps employees become more efficient in their tasks, reducing downtime, minimizing waste, and optimizing manufacturing processes.
  • Technology: Manufacturing is becoming increasingly technology-driven. Training equips employees with the skills to operate and maintain advanced machinery and systems.
  • Productivity: Engaged workers tend to be more productive, contributing to increased output and profitability for the manufacturing company.
  • Compliance: Manufacturing is subject to various regulations and industry standards. Training ensures that employees understand and comply with these requirements, avoiding legal and regulatory issues.

Effective training programs are designed to align with the organization’s goals and objectives, ensuring that the workforce is well-prepared and capable of contributing to the success of the manufacturing operations.

In summary, training in manufacturing is a subset of skills development, with a narrower and more specific focus on teaching job-related skills and knowledge. Skills development, on the other hand, is a more comprehensive and ongoing process that aims to develop a well-rounded and adaptable workforce capable of meeting the evolving challenges of the manufacturing industry. Both training and skills development are important for the success of a manufacturing organization, and they often complement each other in the development of a skilled and competent workforce.

How Can Technology Improve Manufacturing Skills Development and Training

Technology can significantly enhance manufacturing skills development and training by making the process more efficient, effective, and accessible. Incorporating these technological advancements into manufacturing skills development and training can lead to a more skilled and adaptable workforce, increased safety, reduced training costs, and improved overall manufacturing efficiency.

For example, technology enables experts to remotely assist and guide trainees through complex tasks. Workers can wear smart glasses or use mobile devices to share live video streams and receive real-time instructions. AI-driven connected worker solutions can assist in creating personalized learning paths for trainees based on the work they do, their progress, and their learning style.

Smart connected worker platforms, Learning Management Systems (LMS), and mobile apps can provide access to a wide range of training materials, including video tutorials, interactive modules, and assessments. These platforms allow workers to learn at their own pace and on their schedule, reducing the need for expensive and time-consuming in-person training.

Augmentir is the world’s leading, smart, connected worker solution using the foundational AI technologies underpinning ChatGPT to enhance manufacturing training, onboarding, and skills development. Leading manufacturing organizations are using our smart, connected worker suit and AI-driven insights to foster environments of continuous learning, and make skills development and training processes more personalized, accessible, and effective.

Schedule a live demo to learn why manufacturing leaders are choosing us to improve the training lifecycle with digital skills management tools, real-time insights, and more.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

According to Brandon Hall Group research, investment in employee training and development programs to enhance skills and knowledge is the highest-rated initiative globally to improve the employee experience. One highly effective approach towards revolutionizing training and onboarding is a continuous learning method called everboarding.

applying everboarding in manufacturing

Everboarding is a modernized approach toward employee onboarding and training that recognizes learning as a continuous and ongoing process. Its foundational characteristic is the belief that learning doesn’t stop after the initial onboarding period. Instead, everboarding emphasizes continuous skill development and employee knowledge enhancement throughout their careers.

Applying everboarding in a manufacturing environment involves tailoring continuous learning and development approaches to the unique needs and challenges of factory floor operations. As industrial processes evolve, employees must be routinely educated on process improvements, new technologies, safety standards, and efficiency initiatives.

Read on to learn more about how to apply everboarding to the factory floor and how fostering a culture of continuous improvement and learning keeps frontline workers safe, efficient, and engaged:

Steps for Implementing Everboarding in Manufacturing Operations

Everboarding in the context of the manufacturing industry refers to a forward-looking approach that ensures employees remain well-trained, adaptable, and aligned with industry standards throughout their tenure. This is essential in dynamic and fast-paced industrial environments like manufacturing. Here are some steps and strategies to begin implementing everboarding in your operations:

  1. Operationalize Learning: Develop and maintain a systematic approach to training and workforce development and ensure that ongoing training and development are available for all shop floor workers.
  2. Develop Learning Pathways: Create clear learning pathways and career development plans for employees. These pathways should outline the skills and knowledge required for career advancement within the manufacturing shop floor.
  3. Implement Digital Learning Platforms: Leverage digital learning platforms and smart, connected solutions to provide employees with access to training materials, videos, courses, and other resources. These platforms can track progress, and employees can learn at their own pace.
  4. Integrate Learning into the Workflow: Using digital, mobile, and connected technologies, organizations can integrate training into the factory floor for moment-of-need guidance and microlearning that allows frontline workers to stay compliant and operations to continue smoothly.
  5. Provide Feedback and Improvement Loops: Create a feedback mechanism where employees can provide suggestions for improving training programs and processes. Make sure to act on the feedback to continuously enhance the training experience.
  6. Initiate Regular Skill Assessments: Implement regular assessments and evaluations to identify areas where employees need further training or improvement.

Everboarding in a manufacturing factory floor environment is critical for keeping the workforce skilled, adaptable, and able to meet changing demands and technological advancements. By fostering a culture of continuous learning and improvement, you can ensure that the factory floor remains efficient and productive.

5 Useful Everboarding Technologies

Implementing Everboarding in manufacturing requires the use of various technologies to facilitate continuous learning and skill development. Here are five (5) useful technologies that can help speed the adoption of everboarding methods on the factory floor and support frontline workers on their continuous learning paths.

  1. Learning Management Systems (LMS): LMS platforms are essential for delivering and managing training content. They allow manufacturing companies to organize courses, track employee progress, and ensure compliance with training requirements.
  2. Connected Worker Applications: Connected worker applications provide mobile solutions, real-time data, and actionable insights that enable customized and personalized training dedicated to the needs of individual workers and specific tasks.
  3. Artificial Intelligence (AI): AI-driven systems can personalize training content based on employee performance and preferences. AI’s ability to process vast amounts of data, provide personalized experiences, and offer real-time feedback makes it a powerful tool for implementing everboarding.
  4. Internet of Things (IoT): IoT sensors can be integrated into manufacturing equipment to gather data on machine performance and employee interactions. This data can inform training needs and help identify areas for improvement.
  5. Wearable Technology: Wearable devices can be used for on-the-job training and performance monitoring. They are especially useful in high-risk manufacturing environments.

These technologies leverage connectivity, digital tools, and data to create a more dynamic and adaptive learning environment for frontline employees. By integrating emerging technologies like smart, connected worker solutions into manufacturing operations, companies can create a more agile and adaptive learning environment that supports the foundations of everboarding.

Pro Tip

Digital training tools can help implement everboarding and improve learning speed and retention. For example, workers who need visuals or real-world scenarios can access them using AI-powered software to create a comprehensive everboarding and training program that supports frontline employees throughout the entire skills and training lifecycle.

A

Improving Manufacturing Training with Everboarding

Implementing new learning technologies in any industry is met with a certain number of challenges. This remains especially true for the factory floor where training and development are traditionally separate from the work being done, and where traditional onboarding has been a one-and-done type of approach.

However, because everboarding is a process of continuous learning, organizations can improve their industrial training and onboarding, ensuring employees continually acquire new skills and knowledge to adapt to evolving technologies and processes. This not only helps in training new employees but also enables continuous learning and skill development for the entire workforce, improving productivity, safety, and quality in the process.

Implementing everboarding in factory floor operations can seem complex but it is a rewarding process that can be streamlined through solutions like Augmentir’s connected worker solution. With our AI-driven insights, our connected solution reduces onboarding time and transforms workforce training, bringing learning to the factory floor through intelligent guidance that delivers information to workers at the point of need.

Learn how manufacturers are implementing Augmentir’s AI-driven connected worker tools to capture and digitize tribal knowledge, reskill and upskill their workers, and empower their frontline teams – schedule a live demo today.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Learn about the best practices for optimal asset maintenance performance and how to track your assets to ensure that everything is in working condition.

Staying ahead of the curve in today’s manufacturing marketplace means that businesses need to innovate and adapt. To accomplish this, organizations must have a skilled workforce and ongoing training and workforce management processes to support continuous learning and development.

Modernizing training cultivates employee skillsets by implementing continuous learning in the flow of work.

modernize manufacturing training with continuous learning

Continuous learning is the process of attaining new skills on a constant basis. Workflow learning involves educating yourself on the job using resources and self-directed learning materials. Done together, this modern training approach can help streamline productivity.

If you want to learn how to improve manufacturing training with continuous learning and workflow learning, explore this article that answers the following:

What is continuous learning?

Continuous learning in manufacturing involves enabling workers to learn new skills regularly. It’s a great way to improve employee performance and innovation. According to Forbes, embracing a culture of continuous learning can help organizations adapt to market demands, foster innovation, as well as attract and retain top talent.

Learning can come in different forms, from formal course training to hands-on experience. Employees are encouraged to be self-starters who want to evolve their skills on an on-going basis. A good example of a continuous learning model is everboarding; everboarding is a modern approach toward employee onboarding and training that shifts away from the traditional “one-and-done” onboarding model and recognizes learning as an ongoing process.

How can continuous learning be used in manufacturing?

When businesses don’t support continuous learning, manufacturing processes stagnate. This contributes to a lack of innovation and hinders potential opportunities for success that a company may experience.

In a nutshell, the more workers know and the more they can accomplish, the more they can contribute to business growth. This may consist of employees taking an online course or learning a new technique hands-on, no matter what department they’re in.

For example, assembly line workers may learn new manufacturing processes to ensure everything is functioning properly. Meanwhile, operators may study the latest machinery to learn new tricks of the trade.

What is workflow learning?

Workflow training in manufacturing involves learning while doing. This means that workers pick up new skills while on the job through hands-on experience.

The key to workflow learning is that it happens while employees perform their everyday tasks.

Many workers in the manufacturing industry work in shift-based environments, making it difficult for them to attend traditional classroom-based training sessions. With workflow learning, organizations can incorporate more learning processes into the everyday workday of frontline workers – essentially bridging the gap between knowing and doing. This “active learning” aligns with the Pyramid of Learning visual model that illustrates the different stages of learning and their relative effectiveness.

pyramid of learning

Active learning involves the learner actively engaging with the material, often through problem-solving, discussion, or application of the knowledge while they are on the job.

In general, active learning is considered more effective than passive learning in promoting deep understanding and retention of information. Therefore, learning leaders often strive to design learning experiences that involve higher levels of active learning, moving beyond the lower levels of the pyramid and promoting critical thinking, creativity, and problem-solving skills.

How can workflow learning be used in manufacturing?

Workflow learning consists of using resources at your disposal to complete tasks. This strategy is sometimes referred to as performance support.

For example, workers can look up answers to questions, steps of a process, or new services while performing their jobs instead of interrupting their workflow to go to a class or training session.

Pro Tip

Active, or workflow learning can be implemented with mobile learning solutions that leverage connected worker technology and AI to provide workers with bite-sized, on-demand training modules that they can access on smartphones or tablets. These modules can be developed with customized learning paths that are focused on the type of tasks and work employees are doing on the factory floor.

A

How can technology improve manufacturing training?

The nature of manufacturing training is changing in the age of artificial intelligence. Today, many training processes can be streamlined and optimized using digital and smart, connected worker technologies.

For instance, data collected from everyday manufacturing processes can polish training programs online. Experienced workers can share best practices on customized dashboards for other employees to access. These can be updated in real-time and show changes highlighted to better optimize manufacturing processes.

Digital training tools can also help improve learning speed and retention. For example, workers who need visuals or real-world scenarios can assess them using AI-powered software to maximize their training.

 

Augmentir is the world’s leading AI-powered connected worker solution that helps industrial companies optimize the safety, quality, and productivity of the industrial frontline workforce. Contact us for a live demo, and learn why leading manufacturers are choosing us to elevate their manufacturing operations to the next level.

 

See Augmentir in Action
Get in Touch for a Personalized Demo

Augmentir’s take on the trending Workforce Institute’s staggering survey numbers.

Do you remember when offshoring–the outsourcing of production internationally–was once considered the “gold standard” for manufacturers because of reduced costs? Funny how things change. We can partly thank the global pandemic for this. Reshoring, also referred to as ‘onshoring’,  is now the way to go–the apparent panacea to supply chain disruptions and a healthier economy. This should have manufacturers cheering and dancing in the streets, right? Not so fast. We’ve also got a massive labor shortage to deal with. But don’t fret. There are solutions to be found, and they happen to exist in software tools already being embraced by organizations on their journey to digital transformation.

The perks and pressures of reshoring

If your organization isn’t already thinking about reshoring its operations, maybe you should be. Reshoring for manufacturers means greater resiliency, agility, and sustainability by shortening the distances between process and delivery. Less travel means reduced emissions and adherence to ESG standards. Reshoring addresses issues associated with shipping costs, lead times, and new regulations. Working in familiar markets can help identify supply and demand trends more accurately. National employment rates are likely to increase when hiring residents and working with other domestic business partners.

But labor shortages and the variability of today’s workforce have not made reshoring an easy shift. So while there is tremendous opportunity to bring production home, the lack of affordable and skilled labor is having a tremendous impact on our domestic production capacity.

Here’s how you make onshoring work for you. First, stop thinking the old way of recruiting, training, and retaining workers will still work today.

Work with what you’ve got

What’s wrong with training today? Yes, training programs can help improve worker knowledge and skills development. But only if they are meeting the unique needs of individual workers with content-rich, high-impact learning and hands-on training programs. Forget those standard training programs–they are useless in the face of the variable workforce we have available today. The workers you can find are showing up with a mixed bag of experience and skills. That doesn’t have to be a disadvantage anymore. Because there is a smarter way to train and optimize the skills of each of those workers to meet productivity goals individually and fulfill the potential for your organization’s production capacity.

Smart digitization is the ticket to effective onboarding, training, and more–from hire to retire

“The secret of change is to focus all your energy not on fighting the old, but on building the new.” – Socrates

This new era of workforce instability is forcing manufacturers to change. It’s forcing them to turn to digital technology and look at smarter ways to hire, onboard, train, and retain their workers. At Augmentir, we call this Smart Digitization.

What do we mean by ‘smart’ digitization? Smart digitization involves adopting modern, digital tools, mobile technology, and supporting workers throughout their entire lifecycle.

smart digitization throughout worker lifecycle

 

Modern connected worker tools are at the core of the solution that supports workers throughout their employment, from training to troubleshooting in real-time to ongoing learning and development. If you look at the entire employee lifecycle, this means:

  1. Using software tools to digitize and automate onboarding and skills tracking to help get workers operational faster, regardless of their skill and experience.
  2. Once on the job, digitizing and personalizing work instructions based on the individual needs of the worker – whether they are a novice worker or an expert.
  3. Proving instant access to support, within the flow of work.
  4. And finally, using an AI-based system to analyze how workers are performing on the job, and intelligently targeting upskilling and reskilling based on actual work performance.

Workers have access to a suite of digital tools and knowledge resources at their fingertips – digital work instructions, collaboration, and support tools to guide them on the job and quickly problem-solve complex tasks, allowing them to do their personal best.

For employers, this means not only more engaged and collaborative workers, it also means deeper insights into work performance that can help drive continuous improvement efforts.

skills job proficiency mapping

AI-based smart insights intelligently optimize workers’ performance by identifying and tracking their skills in real-time. Smart insights pull from these performance metrics and learn to prompt workers who need new training programs or work opportunities, continuously upskilling and reskilling.

It’s the advanced medicine needed to maximize productivity and operational health.

So as you plan to bring more of your production back home, make sure you’re ready to seize the opportunity and address the challenges of a restricted labor market at the same time.

 

Find out how and why so many manufacturers are turning to Augmentir to turn their workers into efficient, productive, and long-term assets for their businesses.

Check out our latest webinar – Smart Digitization of Frontline Workers to learn more.

 

AI is playing a key role in changing the manufacturing landscape, augmenting workers and empowering them with improved, optimized processes, better data, and personalized instruction.

Deloitte recently published an article with the Wall Street Journal covering how AI revolutionizes how humans work and its transformative impact. They emphasized that AI is not merely a resource or tool, but, that it serves almost as a co-worker, enhancing work processes and efficiency. This article discussed how the evolving form of intelligence augments human thinking and emphasized this as a catalyst for accelerated innovation.

Manufacturing is uniquely situated to benefit from AI to improve operations and empower their frontline workforces. The skilled labor gap has reached critical levels, and the market is under tremendous stress to keep up with growing consumer demand while staying compliant with quality and safety standards. Manufacturing workers are crucial to the success of operations – maintenance, quality control and assurance, and more – manufacturers rely upon their workforce to ensure production proceeds smoothly and successfully.

AI is playing a key role in changing the manufacturing landscape, augmenting workers and empowering them with improved, optimized processes, better data for informed decision-making, troubleshooting, personalized instructions and training, and improved quality assurance and control. According to the World Economic Forum, an estimated 87% of manufacturing companies have accelerated their digitalization over the past year, the IDC states 40% of digital transformations will be supported by AI, and a recent study from LNS Research found that 52% of industrial transformation (IX) leaders are deploying connected worker applications to help their frontline workforces. Not only that, AI technology is expected to create nearly 12 million more jobs in the manufacturing industry.

Integrating AI into manufacturing not only enhances productivity, but also opens the door to new possibilities for worker safety, training, and innovative new manufacturing practices. Here are some ways AI is transforming manufacturing operations:

  • AI-based Workforce Analytics: Collecting, analyzing, and using frontline worker data to assess individual and team performance, optimize upskilling and reskilling opportunities, increase engagement, reduce burnout, and boost productivity.
  • Personalized Training in the Flow of Work: With AI and connected worker solutions, manufacturers can identify and supply training at the time of need that is personalized to each individual and the task at hand.
  • Personalized Work Instructions: AI enables manufacturers to offer customized digital work instructions mapped to their skill levels and intelligently assign work based on each individual’s capabilities.
  • Digital Performance Support and Troubleshooting Guide: Generative AI and bot-based AI virtual assistants offer support and guidance to manufacturing operators, enabling access to collaborative technologies and knowledge bases to ensure the correct actions and processes are taken.
  • Optimize Maintenance Programs: AI algorithms analyze data from sensors on machinery and other connected solutions to predict when equipment is likely to fail. This enables proactive maintenance, minimizing downtime and reducing maintenance costs. Additionally, with AI technologies, manufacturers can implement autonomous maintenance processes through a combination of digital work instructions and real-time collaboration tools. This allows operators to independently complete maintenance tasks at peak performance.
  • Improve Quality Control: AI-powered solutions can improve inspection accuracy and optimize quality control and assurance processes to identify defects faster. With connected worker solutions, manufacturers can effectively turn their frontline workforce into human sensors supplying quality data and enhancing assurance processes.
  • Ensure Worker Safety: AI-driven safety systems coupled with connected worker technologies monitor the work environment, supplying real-time data and identifying potential hazards to ensure a safer workplace for employees.

connected enterprise

As AI continues to advance, the manufacturing industry is poised for even greater transformation, improving both the quality of products and the working conditions for employees. AI is revolutionizing the way the manufacturing industry approaches nearly every process across operations, augmenting work interactions, productivity, efficiency, and boosting innovation.